Avaliação do Uso Integrado de Imagens de Nanossatélites e Classificadores baseados em Aprendizado de Máquina para Estudos da Dinâmica Hidrológica na Região da Nhecolândia (Pantanal)

Conteúdo do artigo principal

Mariana Dias Ramos
https://orcid.org/0000-0001-8205-4624
Eder Renato Merino
https://orcid.org/0000-0003-2155-8620
Célia Regina Montes
Adolpho José Melfi

Resumo

A região da Baixa Nhecolândia é uma das paisagens mais icônicas da Bacia do Pantanal. Sua morfologia única é composta por mais de 10.000 lagoas com águas salino-alcalinas e água doce que coexistem em uma área aproximada de 12.000 km². Essa região está sujeita a alagamentos sazonais que atuam no escoamento superficial, porém, pouco se conhece sobre sua dinâmica de inundação. Avanços recentes na área do geoprocessamento têm ajudado a ampliar nosso conhecimento sobre ambientes lacustres. Este trabalho teve como objetivo avaliar o desempenho de dois classificadores supervisionados baseados em aprendizado de máquina (Support Vector Machine e Random Forest), para a caracterização da dinâmica hidrológica da região da Nhecolândia. Os classificadores foram aplicados em imagens de nanossatélites (PlanetScope) por meio da plataforma de computação em nuvem Google Earth Engine. Os resultados evidenciaram o desempenho satisfatório e semelhante dos dois classificadores.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
DIAS RAMOS, M.; MERINO, E. R.; MONTES, C. R.; MELFI, A. J. Avaliação do Uso Integrado de Imagens de Nanossatélites e Classificadores baseados em Aprendizado de Máquina para Estudos da Dinâmica Hidrológica na Região da Nhecolândia (Pantanal). Revista Brasileira de Cartografia, [S. l.], v. 75, 2023. DOI: 10.14393/rbcv75n0a-67656. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/67656. Acesso em: 22 dez. 2024.
Seção
Sensoriamento Remoto

Referências

ADUGNA, T.; XU, W.; FAN, J. Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sensing. v. 14, n. 3, p. 574, 2022. DOI: 10.3390/rs14030574.

ALMEIDA, T. I. R. de; SÍGOLO, J. B.; FERNANDES, E.; QUEIROZ NETO, J.P.; BARBIERO, L.; SAKAMOTO, A. Y. Proposta de classificação e gênese das lagoas da Baixa Nhecolândia-MS com base em sensoriamento remoto e dados de campo. Revista Brasileira de Geociências. v. 33, n. 2-Suplemento, p. 83-90, 2003. DOI: 10.25249/0375-7536.200333s28390.

ANANIAS, P. H. M.; NEGRI, R. G.; DIAS, M. A.; SILVA, E. A.; CASACA, W. A Fully Unsupervised Machine Learning Framework for Algal Bloom Forecasting in Inland Waters Using MODIS Time Series and Climatic Products. Remote Sensing. v. 14, n. 17, p. 1-22, 2022. DOI: 10.3390/rs14174283

ASSINE, M. L.; MERINO, E.; PUPIM, F.; WARREN, L.; GUERREIRO, R.; MCGLUE, M. Geology and Geomorphology of the Pantanal Basin. In: BERGIER, I.; ASSINE, M. L. (ed.) Dynamics of the Pantanal Wetland in South America. Springer International Publishing, (The Handbook of Environmental Chemistry), v. 37, p. 23- 50, 2015. DOI: 10.1007/698_2015_349.

BARBOSA, C.C.F.; NOVO, E.M.L.M.; MARTINS, V.S., Introdução ao Sensoriamento Remoto de Sistemas Aquáticos: princípios e aplicações. 1a edição. Instituto Nacional de Pesquisas Espaciais. São José dos Campos. 161p. 2019.

BATISTA, G.E.A.P.A. Pré-processamento de dados em aprendizado de máquina supervisionado. 2003. Tese (Doutorado em Ciências de Computação e Matemática Computacional) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2003. DOI: 10.11606/T.55.2003.tde-06102003-160219.

BREIMAN, L. Random Forests. Machine Learning, [s.l.], Springer Science and Business Media LLC. v. 45, n. 1, p. 5-32, 2001. DOI: 10.1023/a:1010933404324.

BURGES, C. J. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, p. 121–167, 1998. DOI: 10.1023/A:1009715923555.

CARVALHO JÚNIOR, O. A., 2018. Aplicações E Perspectivas Do Sensoriamento Remoto Para O Mapeamento De Áreas Inundáveis. Revista de Geografia (Recife) v. 35, n. 4 (especial XII SINAGEO), 412–431p., 2018.

CHANG, C. C., C., LIN, C.J., LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, v. 2 n. 27, p. 1-27, 2011. DOI: 10.1145/1961189.1961199.

COOLEY, S. W., SMITH, L. C., Ryan, J. C., PITCHER, L. H., PAVELSKY, T. M. Arctic‐Boreal Lake dynamics revealed using CubeSat imagery. Geophysical Research Letters, v. 46, p. 2111–2120, 2019. DOI: 10.1029/2018GL081584.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20, p. 273–297, 1995. DOI: 10.1007/bf00994018.

COSTA, M., TELMER, K., Utilizing SAR imagery and aquatic vegetation to map fresh and brackish lakes in the Brazilian Pantanal wetland. Remote Sensing of the Environment, v. 105, p. 204–213, 2006. DOI: 10.1016/j.rse.2006.06.014.

FINLAYSON C. M., MILTON G. R., PRENTICE R.C., Wetland Types and Distribution. In: FINLAYSON C., MILTON G., PRENTICE R., DAVIDSON N. (eds) The Wetland Book. Springer, Dordrecht, 2018. DOI: 10.1007/978-94-007-4001-3_186.

FUNK, C., PETERSON, P., LANDSFELD, M., The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data 2, n. 150066, p.1-21, 2015. DOI: 10.1038/sdata.2015.66.

GORELICK, N., HANCHER, M., DIXON, M., ILYUSHCHENKO, S., THAU, D., MOORE, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone Remote Sensing of the Environment, v. 202, p. 18–27, 2017. DOI: 10.1016/j.rse.2017.06.031.

HSU, C. W., CHANG, C. C., LIN, C. J., A Practical Guide to Support Vector Classification, Technical report, Department of Computer Science, National Taiwan University. 2003.

Instituto Nacional de Meteorologia (INMET). Banco de Dados Meteorológicos para Ensino e Pesquisa - BDMEP. Brasília, DF, Brasil. Disponível em: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Acesso em:09 de junho de 2020.

JUNK, W.; BAYLEY, P.; SPARKS, R. The Flood Pulse Concept in River-Floodplain Systems. Canadian Journal of Fisheries and Aquatic Sciences 106, p. 110 – 127, 1989.

JUNK, W.; CUNHA, C. N.; WANTZEN, K. M.; PETERMANN, P.; STRÜSSMANN, C.; MARQUES, M. I.; ADIS, J. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences, v. 68, p. 278–309, 2006. DOI: 10.1007/s00027-006-0851-4.

KEDDY, P. A., FRASER, L.H., SOLOMESHCH, A. I., JUNK, W. J., CAMPBELL, D.R., ARROYO, M.T.K., ALHO, C.J.R. Wet and Wonderful: The World’s Largest Wetlands Are Conservation Priorities. Bioscience, v..59, p. 39-51. 2009. DOI: 10.1525/bio.2009.59.1.8.

LOH, W., Classification and Regression Trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, v.1, p 14 – 23, 2011. DOI:10.1002/widm.8.

LUZ, A. E. O.; NEGRI, R.G.; MASSI, K. G.; COLNAGO, M.; SILVA, E.A.; CASACA, W. Mapping Fire Susceptibility in the Brazilian Amazon Forests Using Multitemporal Remote Sensing and Time-Varying Unsupervised Anomaly Detection. Remote Sensing, v. 14, n. 2429, p. 1-17, 2022. DOI: 10.3390/rs14102429.

MERINO, E. R.; ASSINE, M. L., Hidden in plain sight: How finding a lake in the Brazilian Pantanal improves understanding of wetland hydrogeomorphology. Earth Surface Processes and Landforms, v. 45, p. 440– 458, 2020. DOI: 10.1002/esp.4745.

MITCHELL, T. M. Machine Learning, 1ª ed, McGraw-Hill, Inc., USA,1997.

NOVO, E. M. L. M. Sensoriamento Remoto: Princípios e Aplicações. 3ª ed, São Paulo:Edgard Blucher, 2008.

OLOFSSON, P.; FOODY, G.M.; HEROLD M.; STEHMAN, S.V.; WOODCOCK, C.E.; WULDER, M.A. Good practices for estimating area and assessing accuracy of land change, Remote Sensing of Environment, v. 148, p. 42-57, 2014. DOI: 10.1016/j.rse.2014.02.015.

OZESMI, S. L.; BAUER, M. E. Satellite remote sensing of wetlands. Wetlands Ecology and Management, v.10, p. 381–402. 2002. DOI: 10.1023/A:1020908432489.

PEREIRA, E.; ABREU, L., MAILLARD, P., Altimetria Por Satélite Radar Aplicada A Hidrologia No Brasil. Revista Brasileira de Cartografia, v. 69, p. 347-360, 2017. DOI: 10.14393/rbcv69n2-44022.

PEREIRA, F. J. S., COSTA, C. A. G., FOERSTER, S., BROSINSKY, A., DE ARAÚJO, J. C., Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery. International Journal of Applied Earth Observation and Geoinformation, v. 79, p. 153–161, 2019. DOI: 10.1016/j.jag.2019.02.009.

PLANET LABS, Planet Imagery Product Specification 56, 2016.

POURSANIDIS, D.; TRAGANOS, D.; CHRYSOULAKIS, N.; REINARTZ, P., Cubesats allow high spatiotemporal estimates of satellite-derived bathymetry. Remote Sensing, v. 11, p. 1-12, 2019. DOI: 10.3390/rs11111299.

PONTIUS JUNIOR, R.G.; MILLONES, M., Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment, International Journal of Remote Sensing, v. 32, n. 15, p. 4407-4429, 2011. DOI: 10.1080/01431161.2011.552923.

SHETTY, S. Analysis of Machine Learning Classifiers for LULC Classification on Google Earth Engine. 2019. Tese de mestrado na Universidade de Twente. 2019.

SOUZA, C. M., JR.; Z. SHIMBO, J.; ROSA, M. R.; PARENTE, L. L.; A. ALENCAR, A.; RUDORFF, B. F. T.; HASENACK, H.; MATSUMOTO, M.; G. FERREIRA, L.; SOUZA-FILHO, P. W. M.; DE OLIVEIRA, S. W.; ROCHA, W. F.; FONSECA, A. V.; MARQUES, C. B.; DINIZ, C. G.; COSTA, D.; MONTEIRO, D.; ROSA, E. R.; VÉLEZ-MARTIN, E.; WEBER, E. J.; LENTI, F. E. B.; PATERNOST, F. F.; PAREYN, F. G. C.; SIQUEIRA, J. V.; VIERA, J. L.; NETO, L. C. F.; SARAIVA, M. M.; SALES, M. H.; SALGADO, M. P. G.; VASCONCELOS, R.; GALANO, S.; MESQUITA, V. V.; AZEVEDO, T. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing. v. 12, n. 2735, 2020. DOI: 10.3390/rs12172735.

STRICK, R. J. P., ASHWORTH, P. J., SAMBROOK SMITH, G. H., NICHOLAS, A. P., BEST, J. L., LANE, S. N., PARSONS, D. R., SIMPSON, C. J., UNSWORTH, C. A., DALE, J., Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery. Earth Surface Processes and Landforms, v. 44, p. 953–972, 2019. DOI: 10.1002/esp.4558.

TASSI, A.; VIZZARI, M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sensing, v. 12, n, 3776, 2020. DOI: 10.3390/rs12223776.

THEODORIDIS, S.; KOUTROUMBAS, K. Pattern Recognition, 4th ed.; Academic Press: San Diego, CA, USA; p. 984, 2008.

WANG, R.; FENG, Q.; JIN, Z.; MA, K.; ZHANG, Z.; LIANG, T. Identification and Area Information Extraction of Oat Pasture Based on GEE—A Case Study in the Shandan Racecourse (China). Remote Sensing. v. 14, n. 4358, 2022. DOI: 10.3390/rs14174358.