Future Mathematics and Statistics teachers' understanding of confidence intervals about the arithmetic average
Main Article Content
Abstract
Confidence intervals, like hypothesis tests, play a crucial role in statistical inference. Currently, this topic has been incorporated into the curriculum for mathematics teacher training and secondary school programs in Chile. In line with this, we investigate the understanding expressed by future Mathematics and Statistics teachers regarding confidence intervals for the mean. We have adopted a qualitative, exploratory-descriptive methodology for this purpose. To achieve this, we analyze the responses of 11 future Mathematics and Statistics teachers who were taking a course in statistical inference, using an open-response questionnaire with two activities related to confidence intervals for the mean and differences in means. The results reveal confusion in the calculation of confidence intervals for the mean, deterministic interpretations, and errors in determining Z or T quantiles. Nevertheless, most future teachers are aware of the assumptions underlying the construction of these confidence intervals. These findings are relevant both for future teachers and for mathematics teacher educators, given the limited research on this topic in the context of teacher education.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The published works are the property of their authors, who may make use of them for subsequent publications, always including the original edition (original title, Ensino em Re-Vista, volume, number, pages). All articles in this journal are the sole responsibility of their authors, and no legal responsibility for their content rests with the Journal or EDUFU.
References
ANDRADE, L.; FERNÁNDEZ, F. Interpretation of Confidence Interval Facing the Conflict. Universal Journal of Educational Research, v. 4, p, 2687–2700, 2016. DOI: http://dx.doi.org/10.13189/ujer.2016.041201.
BAKKER, A.; DERRY, J. Lessons from inferentialism for statistics education. Mathematical Thinking and Learning, v. 13, n. 1–2, p. 5–26, 2011. DOI: http://dx.doi.org/10.1080/10986065.2011.538293.
BEHAR, R. Aportaciones para la mejora del proceso de enseñanza-aprendizaje de la estadística. Trabajo de Tesis Doctoral. Universidad Politécnica de Cataluña, 2011.
COULSON, M., HEALEY, M.; FIDLER, F.; CUMMING, G. Confidence intervals permit, but do not guarantee, better inference than statistical significance testing. Frontiers in Psychology, v. 1, n. 26, p. 1-9, 2010. DOI: https://doi.org/10.3389/fpsyg.2010.00026.
CROOKS, N. M.; BARTEL, A. N.; ALIBALI, M. W. Conceptual knowledge of confidence intervals in psychology undergraduate and graduate students. Statistics Education Research Journal, v. 18, n. 1, p. 46–62, 2019. DOI: https://doi.org/10.52041/serj.v18i1.149.
CUMMING, G.; WILLIAMS, J.; FIDLER, F. (2004). Replication, and researchers’ understanding of confidence intervals and standard error bars. Understanding Statistics, v. 18, n. 3, p. 299-311, 2004.
DEL PINO, G.; ESTRELLA, S. Educación estadística: relaciones con la matemática. Pensamiento Educativo, Revista De Investigación Latinoamericana (PEL), v. 49, n. 1, p. 53–64, 2012. DOI: https://doi.org/10.7764/PEL.49.1.2012.5.
ENGEL, J. On teaching bootstrap confidence intervals. In C. READING (Ed.), Proceedings of the eighth International Conference on Teaching Statistics. Voorburg, The Netherlands: International Statistical Institute. 2010. Disponible en: http://www.stat.auckland.ac.nz/~iase/publications.php.
FRANKLIN, C.; KADER, G.; MEWBORN, D.; MORENO, J.; PECK, R.; PERRY, M.; OTROS. Guidelines for assessment and instruction in statistics education (GAISE) report: A preK-12 curriculum framework. Alexandria, VA: American Statistical Association, 2007.
GAL, I. Adults’ Statistical literacy: meanings, components, responsibilities. International Statistical Review, Nederlandn, n. 70, p. 1-25, 2002.
GARFIELD, J. B.; BEN-ZVI, D. Helping students develop statistical reasoning: Implementing a statistical reasoning learning environment. Teaching Statistics, v. 31, n. 3, p. 72–77, 2009.
HENRIQUES, A. Students’ difficulties in understanding of confidence intervals. En D. BEN-ZVI.; K. MAKAR (Eds.), The Teaching and Learning of Statistics (pp. 129-138). Cham, Switzerland: Springer, 2016.
HERNÁNDEZ, R.; FERNÁNDEZ, C.; BAPTISTA, P. Metodología de la Investigación. México: McGraw Hill, 2010.
HOEKSTRA, R.; MOREY, R. D.; ROUDER, J. N.; WAGENMAKERS, E. J. Robust misinterpretation of confidence intervals. Psychonomic Bulletin & Review, v. 21, p. 1157–1164, 2014.
MINISTERIO DE EDUCACIÓN, CULTURA Y DEPORTE, MECD. Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Madrid: Autor, 2015.
MINEDUC. Bases curriculares 2012. Matemática, educación básica. Santiago: Ministerio de Educación, 2012.
MINEDUC. Programa de Estudio Probabilidades y Estadística Descriptiva e Inferencial 3° y 4° medio – Formación Diferenciada. Unidad de Currículum y Evaluación Ministerio de Educación, 2021a.
MINEDUC. Estándares para la formación inicial docente de Matemáticas. Unidad de Currículum y Evaluación Ministerio de Educación, 2021b.
NCTM. Principles and standards for school mathematics. Reston, VA: NCTM, 2000.
OLIVO, E.; BATANERO, C. Un estudio exploratorio de dificultades de comprensión del intervalo de confianza. Union, v. 12, p. 37–51, 2007.
OLIVO, E.; BATANERO, C., DÍAZ, C. Dificultades de comprensión del intervalo de confianza en estudiantes universitarios. Educación Matemática, v. 20, n. 3, p. 5-32, 2008.
PÉREZ-SERRANO, G. Investigación cualitativa. Retos e interrogantes. Madrid: La Muralla, 1994.
RASHIDAH, N.; RAZAK, F. A.; BAHARUN, N.; ARUL, E. S. G. Investigating Students’ Difficulties in Understanding Confidence Intervals in Linear Regression Models. International Journal of Engineering & Technology, v. 7, n. 4.33, p. 60-64, 2018. DOI: http://dx.doi.org/10.14419/ijet.v7i4.33.23485.
REABURN, R. Students’ understanding of confidence intervals. In K. MAKAR, B. DE SOUSA.; R. GOULD (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics. Voorburg, The Netherlands: IASE, 2014.
ROLDÁN, A. F.; BATANERO, C.; ÁLVAREZ-ARROYO, R. Comprensión del intervalo de confianza por estudiantes de Bachillerato Avances De Investigación En Educación Matemática, v. 18, p. 103–117, 2020. DOI: https://doi.org/10.35763/aiem.v0i18.284.
SÁNCHEZ, N.; RUIZ, B. Análisis de las actividades que proponen dos libros de texto de educación primaria. Un acercamiento comparativo desde la perspectiva de la inferencia informal. REXE- Revista De Estudios Y Experiencias En Educación, v. 21, n. 46, p. 76–101, 2022. DOI: https://doi.org/10.21703/0718-5162.v21.n46.2022.004.
SHAUGHNESSY, J. M. Research on statistics learning and reasoning. In F. K. LESTER JR. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 957–1009). Greenwich, CT: Information Age/NCTM, 2007.
STAKE, R. Investigación con estudio de casos. 4. Ed. Madrid: Morata, S.L, 2007.
PÉREZ-SERRANO, G. Investigación cualitativa: retos e interrogantes. Madrid: La Muralla, 1994.
VÁSQUEZ, C.; Y ALSINA, Á. Enseñanza de la Probabilidad en educación primaria. Un desafío para la formación inicial y continua del profesorado. Números. Revista de Didáctica de las Matemáticas, v. 85, p. 5-23, 2014. Disponible en: http://www.sinewton.org/numeros/numeros/85/Articulos_01.pdf.
YÁÑEZ, G.; BEHAR, R. Interpretaciones erradas del nivel de confianza en los intervalos de confianza y algunas explicaciones plausibles. En M. J. González, M. T. González y J. Murillo (Eds.). Investigación en Educación Matemática XIII, Comunicaciones de los grupos de investigación. XIII Simposio de la SEIEM. Santander: SEIEM. 2009. Disponible en: https://seiem.es/docs/comunicaciones/ GruposXIII/depc/Yanez_Behar_R.pdf.
YAREMKO, R. M.; HARARI, H.; HARRISON, R. C.; LYNN, E. Handbook of research and quantitative methods in psychology: For students and professionals. Hilldale, NJ: Erlbaum, 2013.
WACKERLY, D. D.; MENDENHALL III, W.; SCHEAFFER, R. L. estadística matemática con aplicaciones. México, D.F.: Cengage Learning Editores, 2010.
WALPOLE, R.E.; MYERS, R.H.; MYERS, S.L.; YE, K. probabilidad y estadística para ingeniería y ciencias. 9° edición. Pearson Educación México, 2012.