Explaining the frequentist interpretation of probability with simulations in R software Experience Reports
Main Article Content
Abstract
The frequentist interpretation of probability may not be so clear to students when they are only presented to texts and formulas. In this context, the professor can use ludic strategies in order to the students to absorb such content in a more enlightening way. Through scripts created by the author in the R language, an activity was performed out with students of the discipline of probability from the Production Engineering course at a university, in which they could visualize this concept through simulations of draws and graphical and tabular representations. Each person present in the classroom simulated 100 replications of the same random experiment, recording the relative frequency of occurrence of the event of interest after 100 replications. The average of these relative frequencies resulted in a value very close to the probability of the chosen event (obtained via classical interpretation), making the frequentist interpretation more enlightening for students.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The published works are the property of their authors, who may make use of them for subsequent publications, always including the original edition (original title, Ensino em Re-Vista, volume, number, pages). All articles in this journal are the sole responsibility of their authors, and no legal responsibility for their content rests with the Journal or EDUFU.
References
CSÁRDI, G. crayon: Colored Terminal Output. R package version 1.5.2, 2022. https://CRAN.R-project.org/package=crayon.
DEGROOT, M. H.; SCHERVISH, M. J. Probability and Statistics. Fourth Edition. Boston: Pearson, 2012.
MACHADO, B.; WOJCICKOSKI, V. S. O lúdico no ensino superior: uma proposta de inovação pedagógica. Revista Múltiplo Saber, v. 37, n. 1, mar. 2017. Disponível em: https://www.inesul.edu.br/site/revista_eletronica_volume.php?p=1&&vol=47. Acesso em: 29 jun. 2023.
MEYER. P. L. Probabilidade: aplicações a estatística. Tradução Ruy de C. B. Lourenço Filho. Rio de Janeiro: Editora LTC, 1975.
OLIVEIRA, P. F.; GUERRA, S.; MCDONELL, R. Ciência de dados com R: Introdução. Brasília: Editora IBPAD, 2018. Disponível em: https://cdr.ibpad.com.br/#. Acesso em: 29 jun. 2023.
PINHEIRO, J. I. D. et al. Probabilidade e estatística: quantificando a incerteza. Rio de Janeiro: Elsevier, 2012.
R CORE TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2023. https://www.R-project.org/.
REIS, B. de O. F. B.; SILVA, R. A. da; DEMO, P. O lúdico e o ensino universitário combinam? Políticas Públicas, Educação e Diversidade: Uma Compreensão Científica do Real, v.1, n.1, p. 714-727, nov. 2020. DOI: https://doi.org/10.37885/200801058.
SONDEREGGER, D. L. A Sufficient Introduction to R. 2018. Disponível em https://dereksonderegger.github.io/570L/. Acesso em: 29 jun. 2023.
WEI, Y. Colors in R. 2021. Disponível em http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf. Acesso em: 29 jun. 2023.
XIE, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.42, 2023.