Metacognitive strategy to rethink the representational levels involved in a chemical transformation

Main Article Content

Solange Wagner Locatelli

Abstract

Through this research, it was intended to understand how eight undergraduates of a public university appropriate the representational levels by proposing explanations for the chemical transformation involved in methane combustion. For this, students had to write a text to explain this chemical reaction, as well as answer a questionnaire at the beginning and end of the process. The research was qualitative, based on discursive textual analysis for data organization, in which units of analysis were generated from the texts produced. The results indicated a prevalence of explanations at the macroscopic level, with the submicroscopic level being less considered, as well as the transition between levels, even with more experienced students. This highlights the need for a return to explanations involving the triplet from time to time for a better appropriation of this understanding, since it is not spontaneous.

Downloads

Download data is not yet available.

Article Details

How to Cite
Locatelli, S. W. . (2020). Metacognitive strategy to rethink the representational levels involved in a chemical transformation . Ensino Em Re-Vista, 27(Especial), 1590–1613. https://doi.org/10.14393/ER-v27nEa2020-18
Section
Articles

References

ADADAN, E. Using Multiple Representations to Promote Grade 11 Students’ Scientific Understanding of the Particle Theory of Matter. Research in Science Education, v.43, n.3. p.1079–1105, 2013.

AL-BALUSHI, S.M. The effect of different textual narrations on students’ explanations at the submicroscopic level in chemistry. Eurasia Journal of Mathematics, Science & Technology Education, v.9, n.1, p.3-10, 2013.

BARKE, H.; WISUDAWATI, A.W.; AWILAG, M.H.P.; BUCHTER, J. Acid-base and redox reactions on submicro level: misconceptions and challenge. African Journal of Chemistry Education, v.9, n.1, p.2-17, 2019.

BODGAN, R. C.; BIKLEN, S. K. Investigação qualitativa em educação: uma introdução à teoria e aos métodos. Porto Editora, 1994.

BOUJAOUDE, S.B. A study of the nature of students’understandings about the concept of burning. Journal of Research in Science Teaching, v.28, n.8, p.689-704, 1991.

BUCAT B.; MOCERINO M. Learning at the sub-micro level: structural representations. In: J.K., Gilbert, & D.F., Treagust (Org). Multiple representations in Chemical Education (pp.11-29), 2009.

CHENG, M.; GILBERT, J.K. Towards a better utilization of diagrams in research into the use of representative levels in chemical education. In: J.K., Gilbert, & D.F., Treagust (Org). Multiple representations in Chemical Education (pp.55-73), 2009.

CHITTLEBOROUGH, G.; TREAGUST, D. Correct interpretation of chemical diagrams requires transforming from one level of representation to another. Research Science Educational, v.38, p.463-482, 2008.

FLAVELL, J. H. Metacognitive aspects of problem solving. In L.B., Resnick (Org), The nature of intelligence (pp. 231-235). Hillsdale, N.Y., Erlbaum, 1976.

FREIRE, M.; TALANQUER, V.; AMARAL, E. Conceptual profile of chemistry: a framework for enriching thinking and action in chemistry education. International Journal of Science Education, v.41, n.3, p.1-19, 2019.

GIRASH, J. Metacognition and Instruction. In: V., Benassi, C., Overson, C. Hakala (Orgs.). Applying Science of Learning in Education. Washington, D.C.: Society for the Teaching of Psychology (pp.152-168), 2014.

GILBERT, J.K. Visualization: An emergent field of practice and enquiry in science education. In: J.K. Gilbert, M.Reiner & M. Nakhleh (Orgs).Visualization: theory and practice in science education, (pp.3-24), 2008.

GILBERT, J.K.; TREAGUST, D.F. Introduction: macro, submicro and symbolic representations and the relationship between them: key models in chemical education. In: J.K., Gilbert, & D.F., Treagust (Org). Multiple representations in Chemical Education (pp.1-8), 2009.

HERGA, N.R.; CAGRAN, B.; DINEVSKI, D. Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School. Eurasia Journal of Mathematics, Science & Technology Education, v.12, n.3, p.593-608, 2016.

HINTON, M.E.; NAKHLEH, M.B. Macroscopic, and Symbolic Representations of Chemical Reactions. The Chemical Educator, v.4, n.5, p.158–167, 1999.

JABER L.Z.; BOUJAOUDE S. A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, v.34, n.7, p.973–998, 2012.

JOHNSTONE, A. H. The development of chemistry teaching: a changing response to a changing demand. Journal of Chemical Education, v.70, n.9, p.701-705, 1993.

JUSTI, R.; GILBERT, J.K.; FERREIRA, P.F.M. The application of a ‘model of modelling’ to illustrate the importance of metavisualisation in respect of the three types of representation. In: J.K., Gilbert, & D.F., Treagust (Org). Multiple representations in Chemical Education (pp.285-307), 2009.

LOCATELLI, S.W; ARROIO, A. Dificuldades na transição entre os níveis símbólico e submicro - repensar o macro pode auxiliar a compreender reações químicas?
Enseñanza de las ciencias, n.º extraordinário, p.4239-4244, 2017.

LOCATELLI, S.W. Prior knowledge expressed by undergraduated students regarding to macro, submicro and symbolic levels. Em XVI International Scientific Conference, Sieldce, Polonia. Proceedings - Lifelong Learning – the present and the future, v.1, 205-209, 2018.

MARCONI, M. A.; LAKATOS, E. V. Metodologia científica. São Paulo: Editora Atlas, 2004.

MINAYO, M.C.S.O. Ciência, técnica e arte: o desafio da pesquisa social. 5. Ed. In M.C.O., Minayo (Org). Pesquisa social: teoria, método e criatividade. Editora Vozes, 1996.

MORAES, R.; GALIAZZI, M.C. Análise textual discursiva. 3. ed. Editora Unijuí, 2016.

MOREIRA, M.H.; ARROIO, A. The complexity of representations in the chemistry teaching: an experience for atomic model. Natural Science Education, v.34, n.2, p.25-35, 2012.

NAKHLEH, M.B. Why some students don’t learn chemistry: Chemical misconceptions. Journal of Chemical Education, v.69, n.3, p.191-196, 1992.

PEREIRA, T.M.; WEISS, A.; VOGEL, M.; RECEPUTI, C.C.Uma investigação sobre os saberes docentes no processo de formação inicial da licenciatura em química: relação com as abordagens pedagógicas. Revista de Educação, Ciências e Matemática, v.8, n.2, 2018.

RAHAYU, S.; KITA, M. An analysis of indonesian and japanese students’understandings of macroscopic and submicroscopic levels of representing matter and its changes. International Journal of Science and Mathematics Education, v.8, p.667-688, 2010.

RAUPP, D.; SERRANO, A.; MOREIRA, M.A. Desenvolvendo habilidades visuoespaciais: uso de software de construção de modelos moleculares no ensino de isomeria geométrica em química. Experiências em Ensino de Ciências, v.4, n.1, p.65-78, 2009.

ROSA, M.I.F.P.S.; SCHNETZLER, R.P. Sobre a importância do conceito transformação química no processo de aquisição do conhecimento químico. Química Nova na Escola, v.8, p.31-35, 1998.

TABER, K.S. Learning at the symbolic level. In: J.K., Gilbert, & D.F., Treagust (Org). Multiple representations in Chemical Education (pp.75-104), 2009.

TALANQUER, V. Macro, submicro, and symbolic: The many faces of the chemistry ‘‘triplet’’. International Journal of Science Education, v.33, p.179–195, 2011.

TREAGUST, D.F.; CHITTLEBOROUGH, G.; MAMIALA, T.L. The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, v.25, n.11, p.1353-1368, 2003.

TSAPARLIS, G. Learning at the Macro Level: The Role of Practical Work. In: J.K., Gilbert, & D.F., Treagust (Org). Multiple representations in Chemical Education (pp.109-136), 2009.

UPAHI, J.; RAMNARAIN, U. Representations of Chemical Phenomena in Secondary School Chemistry Textbooks. Chemistry Education Research and Practice, v.20, p.146-159, 2019.