Estratégias de ensino e aprendizagem em um curso de bioestatística durante a pandemia: percepções de doutorandos
Conteúdo do artigo principal
Resumo
São analisadas as percepções de um grupo de dez doutorandos em Saúde Coletiva sobre estratégias de ensino e aprendizagem em um curso de bioestatística durante a pandemia de Covid-19. As estratégias de ensino implementadas dentro do curso por meio de encontros online foram leitura de relatórios, leitura crítica de artigos de pesquisa e análise de dados reais por meio de softwares especializados e gratuitos. As fontes de informação foram os diálogos abertos com os alunos ao final do curso e as avaliações escritas sobre aspectos metodológicos. Cada aluno avaliou o curso e analisou seus processos e percepções de aprendizagem. No geral, as percepções dos alunos foram positivas em relação à gestão do tempo, agenda das aulas, relatórios de leitura, revisões aula a aula, leitura crítica e uso de software estatístico com dados reais. Os resultados são consistentes com trabalhos anteriores sobre as percepções dos alunos e as estratégias de ensino contribuem para transformar positivamente a percepção que os alunos têm da estatística.
Downloads
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Os trabalhos publicados são de propriedade dos seus autores, que poderão dispor deles para posteriores publicações, sempre fazendo constar a edição original (título original, Ensino em Re-Vista, volume, nº, páginas). Todos os artigos desta revista são de inteira responsabilidade de seus autores, não cabendo qualquer responsabilidade legal sobre seu conteúdo à Revista ou à EDUFU.
Referências
AL SOUB, T. F.; ALSARAYREH, R. S.; AMARIN, N. Z. Students’ satisfaction with Using E -Learning to Learn Chemistry in Light of the COVID-19 Pandemic in Jordanian Universities. International Journal of Instruction, v. 14, n. 3, p. 1011–1024. 2021. DOI: http://doi.org/10.29333/iji.2021.14359a.
ANDRADE, L.; FERNÁNDEZ, F.; ÁLVAREZ, I. Panorama de la investigación en Educación Estadística desde tesis doctorales 2000-2014. TED: Tecné, Episteme y Didaxis, v. 14, n.41, p. 87–107. 2017. DOI: https://doi.org/10.17227/01203916.6039.
BAKKER, A.; WAGNER, D. Pandemic: lessons for today and tomorrow?. Educational Studies in Mathematics, v. 104, no 1, p. 1–4. 2020. DOI: https://doi.org/10.1007/s10649-020-09946-3.
BARGAGLIOTTI, A. et al. Pre-K–12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II): A Framework for Statistics and Data Science Education. Alexandria, USA: American Statistical Association, Acesso em: 2020. ISBN: 978-1-73422-351-4.
BATANERO, C. Treinta años de investigación en educación estocástica: Reflexiones y desafíos. In: ACTAS DEL TERCER CONGRESO INTERNACIONAL VIRTUAL DE EDUCACIÓN ESTOCÁSTICA [Congreso]. Acesso em. 2019. Disponível em: https://www.ugr.es/~fqm126/civeest/ponencias/batanero_ing.pdf.
BAWANEH, A. K. The Satisfaction Level Of Undergraduate Science Students Towards Using E-Learning And Virtual Classes In Exceptional Condition Covid-19 Crisis. Turkish Online Journal of Distance Education, v. 22, no 1, p. 52–65. 2021. DOI: https://doi.org/10.17718/TOJDE.849882.
BEN-ZVI, D.; GARFIELD, J. Statistical literacy, reasoning, and thinking: goals, definitions, and challenges. In: BEN-ZVI, D.; GARFIELD, J. The Challenge of Developing Statistical Literacy, Reasoning and Thinking. Dordrecht: Springer, 2004. p. 3–15.
BEN-ZVI, D.; MAKAR, K. The Teaching and Learning of Statistics: International Perspectives. In: BEN-ZVI, D.; MAKAR, K. (Orgs.). PROCEEDINGS OF THE THIRTHIENTH INTERNATIONAL CONGRESS ON MATHEMATICAL EDUCATION ICME-12. Springer, 2015. 334 p. DOI: https://doi.org/10.1007/978-3-319-23470-0.
BEN-ZVI, D.; MAKAR, K.; GARFIELD, J. International handbook of research in statistics education. Cham, Switzerland: Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-66195-7.
BUDÉ, L. et al. The effect of directive tutor guidance in problem-based learning of statistics on students’ perceptions and achievement. Higher Education, v. 57, no 1, p. 23–36, 2009. DOI: https://doi.org/10.1007/s10734-008-9130-8.
CARVER, R. et al. Guidelines for assessment and instruction in statistics education: College report. Alexandria, USA, 2016. DOI: https://doi.org/10.3928/01484834-20140325-01.
CASTRO, W. F. et al. A Mathematics Education Research Agenda in Latin America Motivated by Coronavirus Pandemic. Eurasia Journal of Mathematics, Science and Technology Education, v. 16, no 12, em1919, 2020. DOI: https://doi.org/10.29333/ejmste/9277.
CHEN, X.; LEUNG, F. K. S.; SHE, J. Dimensions of students’ views of classroom teaching and attitudes towards mathematics: A multi-group analysis between genders based on structural equation models. Studies in Educational Evaluation, v. 78, p. 101289, 2023. DOI: https://doi.org/10.1016/j.stueduc.2023.101289.
CHIPHAMBO, S. M.; MTSI, N.; MASHOLOGU, M. Student’s perceptions on how high school mathematics should be taught: a south African perspective. Ponte International Scientific Researches Journal, v. 76, no 11, 2020. DOI:
http://dx.doi.org/10.21506/j.ponte.2020.11.5.
CRESWELL, J. Research Design: Qualitative, quantitative and mixed methods approaches. Londres: SAGE, 2014.
CROTTY, M. The Foundations of Social Research: Meaning and Perspective in the Research Process. Londres: SAGE, 1998.
DAVIES, C. Online seminars in statistics for doctoral students: A case study. Journal of University Teaching & Learning Practice, v. 18, no 2, p. 1-10, 2021. DOI: https://doi.org/10.53761/1.18.2.6.
DELMAS, R. A Comparison of Mathematical and Statistical Reasoning. In: BEN-ZVI, D.; GARFIELD, J. (Orgs.). The Challenge of Developing Statistical Literacy, Reasoning and Thinking. Dordrecht: Springer Netherlands, 2004. p. 79–95. DOI: https://doi.org/10.1007/1-4020-2278-6_4.
ENGELBRECHT, J. et al. Will 2020 be remembered as the year in which education was changed? ZDM - Mathematics Education, v. 52, no 5, p. 821–824, 2020. DOI: https://doi.org/10.1007/s11858-020-01185-3.
FIORAVANTI, R.; GRECA DUFRANC, I. M.; MENESES VILLAGRA, J. A. Caminos do ensino de estatística para a área da saúde. Revista Latinoamericana de Investigacion en Matematica Educativa, v. 22, no 1, p. 67–96, 2019. Disponible en http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-24362019000100067&lng=es&nrm=iso. Accedido en 21 oct. 2023. Epub 23-Abr-2021.
GARFIELD, J. The challenge of developing statistical reasoning. Journal of Statistics Education, v. 10, no 3, 2002. DOI: https://doi.org/10.1080/10691898.2002.11910676.
GARFIELD, J.; BEN-ZVI, D.; CHANCE, B.; ROSETH, C. et al. Developing students’ statistical reasoning: Connecting research and teaching practice. Dordrecht: Springer, 2008. ISBN: 978-1-4020-8382-2.
GARFIELD, J.; BEN-ZVI, D.; CHANCE, B.; MEDINA, E. et al. The discipline of Statistics education. In: GARFIELD, J.; BEN (Orgs.). Developing Students’ Statistical Reasoning: Connecting Research and Teaching Practice. 2008. p. 1–408. ISBN: 978-1-4020-8382-2, DOI: https://doi.org/10.1007/978-1-4020-8383-9.
GARFIELD, J.; BEN-ZVI, D. How students learn statistics revisited: A current review of research on teaching and learning statistics. International Statistical Review, v. 75, no 3, p. 372–396, 2007. Disponible en https://onlinelibrary.wiley.com/. DOI: https://doi.org/10.1111/j.1751-5823.2007.00029.x.
GILLHAM, B. Case study: research methods. Londres: Continuum, 2000.
GRAVESTOCK, P.; GREGOR-GREENLEAF, E. Student Course Evaluations: Research, Models and Trends. Toronto: The Higher Education Quality Council of Ontario, 2008. Disponível em: https://teaching.pitt.edu/wp-content/uploads/2018/12/OMET-Student-Course-Evaluations.pdf.
GUNDLACH, E. et al. A comparison of student attitudes, statistical reasoning, performance, and perceptions for web-augmented traditional, fully online, and flipped sections of a statistical literacy class. Journal of Statistics Education, v. 23, no 1, p. 1–33, 2015. DOI: https://doi.org/10.1080/10691898.2015.11889723.
JONES, E.; PALMER, T. A review of group-based methods for teaching statistics in higher education. Cornell University Repository. 2020. p. 1–27. DOI: https://doi.org/10.1093/teamat/hrab002.
KOPARAN, T. Difficulties in learning and teaching statistics: teacher views. International Journal of Mathematical Education in Science and Technology, v. 46, no 1, p. 94–104, 2015. DOI: https://doi.org/10.1080/0020739X.2014.941425.
KOPARAN, T. Analysis of Teaching Materials Developed by Prospective Mathematics Teachers and Their Views on Material Development. Malaysian Online Journal of Educational Technology, v. 5, no 4, p. 14–34, 2017. Disponible en: https://mojet.net/index.php/mojet/article/view/111.
LANGE, N. DE; PILLAY, G.; CHIKOKO, V. Doctoral learning: A case for a cohort model of supervision and support. South African Journal of Education, v. 31, no 1, p. 15–30, 2011. DOI: https://doi.org/10.15700/saje.v31n1a413.
LAWTON, S.; TAYLOR, L. Student Perceptions of Engagement in an Introductory Statistics Course. Journal of Statistics Education, v. 28, no 1, p. 45–55, 2020. DOI: https://doi.org/10.1080/10691898.2019.1704201.
LEDER, G.; GROOTENBOER, P. Affect and mathematics education. Mathematics Education Research Journal, v. 17, no 2, p. 1–8, 2005.
LOVETT, M. A collaborative convergence on studying reasoning processes: A case study in statistics. En: KLAHR, D.; CARVER, S. (Orgs.). Cognition and Instruction: 25 Years of Progress, p. 347–384. 2001.
MADDEN, S. R. Exploring Secondary Teacher Statistical Learning: Professional Learning in a Blended Format Statistics and Modeling Course. En: BURRIL, GAIL; BEN-ZVI, D. (Org.). Topics and Trends in Current Statistics Education Research: International Perspectives. Cham, Switzerland, p. 265–282. 2019. DOI: https://doi.org/10.1007/978-3-030-03472-6_12.
MATHEMATICS TEACHER TRAINING SCHOLARSHIP. The Importance Of Maths In The Covid-19 Pandemic. 2020. Disponível em: http://teachingmathsscholars.org/newsandevents/covid-19pandemic. Acesso em: 27/abr./21.
MILES, M.; HUBERMAN, M.; SALDAÑA, J. Qualitative Data Analysis A Methods. Arizona State University: SAGE, 2014.
OCAÑA-RIOLA, R. The Use of Statistics in Health Sciences: Situation Analysis and Perspective. Statistics in Biosciences, v. 8, no 2, p. 204–219, 2016. DOI: https://doi.org/10.1007/s12561-015-9138-4.
PERALES, O. A. et al. High School Students’ Perceptions of 1:1 CSCL Environment in a Mathematics Classroom. Computers in the Schools, p. 1–21, 2023. DOI: https://doi.org/10.1080/07380569.2023.2233953.
PFANNKUCH, M. The role of context in developing informal statistical inferential reasoning: A classroom study. Mathematical Thinking and Learning, v. 13, no 1–2, p. 27–46, 2011. DOI: https://doi.org/10.1080/10986065.2011.538302.
POPPING, R. Analyzing Open-ended Questions by Means of Text Analysis Procedures. Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique, v. 128, no 1, p. 23–39, 2015. DOI: https://doi.org/10.1177/0759106315597389.
ROJAS, M.; ZAPATA, J.; GRISALES, H. Síndrome de burnout y satisfacción laboral en docentes de una institución de educación superior, Medellín, 2008. Rev. Fac. Nac. Salud Pública, v. 27, no 2, p. 198–210, 2009.
SAHAI, H.; OJEDA, M. M. Teaching biostatistics to medical students and professionals: Problems and solutions. International Journal of Mathematical Education in Science and Technology, v. 30, no 2, p. 187–196, 1999. DOI: https://doi.org/10.1080/002073999287978.
SANTABÁRBARA, J.; LÓPEZ-ANTÓN, R. Actitudes hacia la estadística en residentes de medicina que cursan un posgrado de investigación. Revista de la Fundación Educación Médica, v. 22, no 2, p. 79, 2019. Disponible en http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S2014-98322019000200005&lng=es&nrm=iso. Accedido en 22 oct. 2023. DOI: https://dx.doi.org/10.33588/fem.222.987.
SCHUESSLER, J. H. " Chunking " Semester Projects : Does it Enhance Student Learning ?. Journal of Higher Education Theory and Practice, v. 17, no June, p. 115–120, 2017.
SHAUGHNESSY, M. Research on statistics learning and reasoning. In: LESTER, F. (Org.). Second handbook of research on mathematics teaching and learning. Charlotte, NC: NCTM, 2007. p. 957–1009.
SKJOTT LINNEBERG, M.; KORSGAARD, S. Coding qualitative data: a synthesis guiding the novice. Qualitative Research Journal, v. 19, no 3, p. 259–270, 2019. DOI: https://doi.org/10.1108/QRJ-12-2018-0012.
WISKER, G. et al. From Supervisory Dialogues to Successful PhDs: Strategies supporting and enabling the learning conversations of staff and students at postgraduate level. Teaching in Higher Education, v. 8, no 3, p. 383–397, 2003. DOI: https://doi.org/10.1080/13562510309400.
ZHANG, Y. et al. Attitudes toward statistics in medical postgraduates: Measuring, evaluating and monitoring. BMC Medical Education, v. 12, no 1, 2012. DOI: https://doi.org/10.1186/1472-6920-12-117.
ZHOU, Y. Blended Teaching for Research Methods and Statistics Courses. PEOPLE: International Journal of Social Sciences, v. 3, no 3, p. 1275–1283, 2018. Disponível em: https://grdspublishing.org/index.php/people/article/view/1235. Acesso em: 21 oct. 2023. DOI: https://doi.org/10.20319/pijss.2018.33.12751283.
ZIEFFLER, A. et al. What Does Research Suggest About the Teaching and Learning of Introductory Statistics at the College Level? A Review of the Literature. Journal of Statistics Education, v. 16, no 2, p. 26, 2008. DOI: https://doi.org/10.1080/10691898.2008.11889566.