PROPOSTA DE REDE NEURAL ARTIFICIAL PARA ESTIMATIVA DO CONFORTO TÉRMICO
DOI:
https://doi.org/10.14393/RCG2510071275Palavras-chave:
Conforto térmico, Aprendizagem de máquina, Climatologia urbanaResumo
O artigo apresenta o desenvolvimento de um procedimento utilizando Rede Neural Artificial (RNA) para realizar a previsão do conforto térmico. Os dados utilizados na pesquisa foram disponibilizados no banco de dados da ASHRAE, que reúne dados climatológicos de trabalhos científicos mundiais. Para a arquitetura da RNA, optou-se por um modelo Feed-Forward (FF) com rede triangular de três camadas, otimizador NAdam com taxa de aprendizado de 0,01 e função de ativação ReLu em três camadas. Dividiram-se os dados em 70% para treinamento e 30% para teste, utilizando um batch size de 512 executando 1.500 epochs. Os parâmetros de entrada usados foram: índice de resistência térmica das vestimentas, taxa de metabolismo individual, temperatura do ar, umidade relativa do ar, velocidade do ar e temperatura externa mensal do ar, e o parâmetro de saída foi o conforto térmico. O desenvolvimento da rede neural foi realizado em linguagem Python utilizando as bibliotecas existentes (Tensorflow e Keras), sendo posteriormente disponibilizado no Github. Os resultados mostraram que a RNA ajustada apresentou um erro de 13,7%, considerada como tendo um bom ajuste para estimar a sensação térmica.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Fernanda Marcielli Santos, Carlo Ralph de Musis
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos: a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho licenciado sob a Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. b) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal), já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado. c) Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.