PREDICTIVE MODELING OF DEFORESTATION IN THE UPPER PARAGUAY BASIN IN THE STATE OF MATO GROSSO, BRAZIL
DOI:
https://doi.org/10.14393/RCG2510171664Keywords:
Amazon, Pantanal, Cerrado, Commodities, Predictive modelsAbstract
The objective of this study was to perform a predictive simulation of deforestation in the Upper Paraguay Basin in the Brazilian state of Mato Grosso, to generate information to support land planning strategies aimed at environmental conservation. The modeling was operationalized in the Dinamica EGO program using vegetation cover and land use data from 1985 to 2020, associated with explanatory variables of deforestation in the investigated area. Five steps were performed in the methodology: calculation of the transition matrices, determination of evidence weights, model fitting, validation, and projection of the model in the trend scenario for the year 2050. The simulation model showed an accuracy rate of 75.60%. Three driving variables were consistently associated with the deforestation stimulus (proximity to previously deforested areas, roads, and cities). In contrast, the proximity to protected areas has discouraged deforestation. For the year 2050, a projected loss of 21.20% (21,129.05 km²) in natural vegetation areas and an increase of 29.81% (21,135.47 km²) in anthropogenic agricultural areas were forecasted for the basin. In this scenario, the anthropogenic agricultural areas will have 92,029.92 km², surpassing the natural vegetation areas which are projected to cover 78,507.56 km² by 2040.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alexander Webber Perlandim Ramos, Úrsula Ruchkys de Azevedo, Edineia Aparecida dos Santos Galvanin
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos: a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho licenciado sob a Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. b) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal), já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado. c) Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.