Correction of Precipitation Data in Weather Files for the Subtropical Climate in Southern Brazil
PDF-en (English)

Palavras-chave

Weather files
Building energy simulations
Test Reference Year
Typical Meteorological Year

Como Citar

BULIGON, L. B.; GABRIEL, E.; LIMA, S. F. S.; GRIGOLETTI, G.; PICCILLI, D. G. A. Correction of Precipitation Data in Weather Files for the Subtropical Climate in Southern Brazil. Sociedade & Natureza, [S. l.], v. 35, n. 1, 2023. DOI: 10.14393/SN-v35-2023-67645. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/67645. Acesso em: 24 nov. 2024.

Resumo

The thermal performance of buildings can be evaluated prior to its construction by modeling it using a specialized software. Climate boundary conditions must be represented by a weather file that is composed of a weather dataset organized hourly according to a defined year structure such as Test Reference Year (TRY) or Typical Meteorological Year (TMY). Before this study, there were a few weather files available for cities in southern Brazil, notably, Santa Maria, RS, classified as a humid subtropical climate. The most recent available weather file was built in 2014 and presents inconsistencies with respect to precipitation data. Therefore, the objetive of this study was to process and analyze the climate data of Santa Maria over an eighteen-year period (2002-2020), to generate a more reliable weather file. The applied method considered the following procedures: data collection and processing; TRY (TRY17) and TMY2 (TMY0220) definition; solar radiation data calculation; EPW files generation; and comparison between the new EPW files and the previous existing files. As a result, in a short period of time (2014-2020), significant differences among the weather files were observed. The importance of updating weather files in time intervals shorter than 30 years was emphasized. In relation to the comparative analysis, both weather files (TRY17 and TMY0220) presented dry bulb temperatures in consonance with the other files previously available. Although, the correction of precipitation data could originate building simulations closer to the reality.

https://doi.org/10.14393/SN-v35-2023-67645
PDF-en (English)

Referências

ABNT. Associação Brasileira de Normas Técnicas. NBR 15220-3. Desempenho térmico de edificações, parte 3: zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. Rio de Janeiro, 2005. (in Portuguese).

AL-MOFEEZ I. A.; NUMAN, M. Y.; ALSHAIBANI, K. A.; AL-MAZIAD, F. A. Review of typical vs. synthesized energy modeling weather files. Journal of Renewable and Sustainable Energy, v. 4, n. 1, 012702, 2012. https://doi.org/10.1063/1.3672191.

ARGIRIOU, A.; LYKOUDIS, S.; KONTOYIANNIDIS, S.; BALARAS, C.A.; ASIMAKOPOULOS, D.; PETRAKIS, M.; KASSOMENOS, P. Comparison of methodologies for TMY generation using 20 years data for Athens, Greece. Solar Energy, [S.L.], v. 66, n. 1, p. 33-45, 1999. Elsevier BV. http://dx.doi.org/10.1016/s0038-092x(99)00012-2.

ANSI/ASHRAE 140-2014. Standard method of test for the evaluation of building energy analysis computer programs. Atlanta: ASHRAE, 2014.

BARNABY, S. C.; CRAWLEY, B. D. Weather data for building performance simulation. Building Performance Simulation for Design and Operation. London: Spon Press. p.37-55, 2011.

BARREIRA, E.; SIMÕES, M.L.; DELGADO, J.M.P.Q.; SOUSA, I. Procedures in the construction of a test reference year for Porto-Portugal and implications for hygrothermal simulation. Sustainable Cities and Society, [S.L.], v. 32, p. 397-410, jul. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.scs.2017.04.013.

BRE, F.; FACHINOTTI, V. D. Generation of typical meteorological years for the Argentine Littoral Region. Energy and Buildings, [S.L.], v. 129, p. 432-444, out. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.enbuild.2016.08.006

BILBAO, J.; MIGUEL, A.; FRANCO, J. A.; AYUSO, A. Test reference year generation and evaluation methods in the continental Mediterranean area. Journal of Applied Meteorology, v. 43, n .2, p. 390–400, 2004. https://doi.org/10.1175/1520-0450(2004)043<0390:TRYGAE>2.0.CO;2.

CARLO, J. C.; LAMBERTS, R. Processamento de arquivos climáticos para simulação do desempenho energético de edificações. Universidade Federal de Santa Catarina. Relatório LabEEE para ELETROBRÁS/PROCEL, Florianópolis, 2005. Available at: https://labeee.ufsc.br/sites/default/files/arquivos_climaticos/RT200504.pdf. Accessed on: Sept. 01, 2022.

CRAWLEY, D. B. Which weather data should you use for energy simulations of commercial buildings? Transactions American Society of Heating Refrigerating and Air Conditioning Engineers, v. 104, p. 498–515, 1998. Available at: https://climate.onebuilding.org/papers/1998_06_Crawley_Which_Weather_Data_Should_You_Use_for_Energy_Simulations_of_Commercial_Buildings.pdf.

DETOMMASO, M.; COSTANZO, V.; NOCERA, F. Application of weather data morphing for calibration of urban ENVI-met microclimate models. Results and critical issues. Urban Climate, [S.L.], v. 38, p. 100895, 2021. Elsevier BV. http://dx.doi.org/10.1016/j.uclim.2021.100895.

DU, H.; UNDERWOOD, C. P.; EDGE, J. S. Generating test reference years from the UKCP09 projections and their application in building energy simulations. Building Services Engineering Research and Technology, v. 33, n. 4, p. 387–406, 2012. http://dx.doi.org/10.1177/0143624411418132

ENERGYPLUS. Open-source whole-building energy modeling (BEM) engine. Available at: https://www.energy.gov/eere/buildings/downloads/energyplus-0. Accessed on: 01 Sept. 2022.

EVOLA, G.; COSTANZO, V.; INFANTONE, M.; MARLETTA, L. Typical-year and multi-year building energy simulation approaches: a critical comparison. Energy, 219, 119591, 2021. https://doi.org/10.1016/j.energy.2020.119591.

FAGBENLE, R. L. Generation of a test reference year for Ibadan, Nigeria. Energy Conversion and Management, v. 36, n. 1, p. 61–63, 1995. https://doi.org/10.1016/0196-8904(94)00039-3.

GUIMARÃES, I. B. B. Análises de incertezas e sensibilidade de arquivos Climáticos e seus impactos em simulações computacionais termo energéticas. p. 109. Dissertation - Postgraduate Program in Architecture and Urbanism. Federal University of Viçosa, Viçosa, 2016. In Portuguese. Available at: https://locus.ufv.br//handle/123456789/20623. Accessed on: 01 September 2022.

GRIGOLETTI, G. C.; FLORES, M. G.; SANTOS, J. C. P. Tratamento de dados climáticos de Santa Maria, RS, para análise de desempenho térmico de edificações. Ambiente Construído, [S.L.], v. 16, n. 1, p. 123-141, jan. 2016. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1678-86212016000100064.

GRIMM, A. M.; FERRAZ, S. E. T.; GOMES, J. Precipitation anomalies in Southern Brazil Associated with El Niño and La Niña events. Journal of Climate, v. 11, n. 11, p. 2863-2880, 1998. https://doi.org/10.1175/1520-0442(1998)011<2863:PAISBA>2.0.CO;2.

HALL, I. J.; PRAIRIE, R. R.; HERBERT, E. A.; ELDON, C. B. Generation of Typical Meteorological Years for 26 SOLMET Stations, Sandia National Laboratories, Albuquerque NM, USA, 1978. Technical Report SAND-78-1601. Available at: https://www.osti.gov/biblio/7013202. Accessed on: Sept. 01, 2022.

HUI, C. Energy performance of air-conditioned buildings in Hong Kong. PhD thesis. City University of Hong Kong, 1996. Available at: https://scholars.cityu.edu.hk/en/theses/theses(5716d23a-fe54-472c-b0eb-30120e9e1b06).html. Accessed on: Sept. 01, 2022. Accessed on: Sept. 01, 2022.

INMET. Normais Climatológicas do Brasil 1981-2010. Instituto Nacional de Meteorologia. Brasília. In Portuguese, 2020. Available at: https://portal.inmet.gov.br/normais. Accessed on: Sept. 01, 2022.

ISO. ISO15927-4 - Hygrothermal performance of buildings – calculation and presentation of climatic data – Part 4: Hourly data for assessing the annual energy for heating and cooling. Geneva: ISO, 2005.

JANJAI, S.; DEEYAI, P. Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment. Applied Energy, v. 86, p. 528–537, 2009.. https://doi.org/10.1016/j.apenergy.2008.08.008

KALAMEES, T., KURNITSKI, J. Estonian test reference year for energy calculations. Proceedings of the Estonian Academy of Sciences, Engineering, v. 12, n. 1, n. 40–58, 2006. https://doi.org/10.3176/eng.2006.1.04

KALAMEES, T.; VINHA, J. Estonian Climate Analysis for Selecting Moisture Reference Years for Hygrothermal Calculations. Journal Of Thermal Envelope And Building Science, [S.L.], v. 27, n. 3, p. 199-220, jan. 2004. SAGE Publications. http://dx.doi.org/10.1177/1097196304038839.

KIM, S.; ZIRKELBARCH, D.; KÜNZEL, H. M.; LEE, J.; CHOI, J. Development of test reference year using ISO 15927-4 and the influence of climatic parameters on building energy performance. Building and Environment, v. 114, (), p. 374-386, 2017. https://doi.org/10.1016/j.buildenv.2016.12.037

KÖPPEN, W., GEIGER, R. Klimate der Erde, Justus Perthes, Gotha, 1928. (in German).

LABEEE. Laboratório de Eficiência Energética em Edificações. Arquivos climáticos em formato TRY, SWERA, CSV e BIN. Florianópolis: LABEEE / UFSC, 2022.

LEE, K.; YOO, H.; LEVERMORE, G. J. Generation of typical weather data using the ISO Test Reference Year (TRY) method for major cities of South Korea. Building and Environment, v. 45, n. 4, p. 956–963, 2010. https://doi.org/10.1016/j.buildenv.2009.10.002.

LEITZKE, R. K.; BELTRAME, C. M.; FREITAS, J. R.; SEIXAS, J. N. Optimization of the traditional method for creating a weather simulation file: the Pelotas .epw case. Journal of Civil Engineering and Architecture, v. 12, p.741-756, 2018. https://doi.org/10.17265/1934-7359/2018.10.006

LI, H.; YANG, Y.; LV, K.; LIU, J.; YANG, L. Compare several methods of select typical meteorological year for building energy simulation in China. Energy, v.209, 118465, 2020. https://doi.org/10.1016/j.energy.2020.118465.

LIU, S.; KWOK, Y.T.; LAU, K.; NG, E. Applicability of different extreme weather datasets for assessing indoor overheating risks of residential buildings in a subtropical high-density city. Building And Environment, [S.L.], v. 194, p. 107711, 2021. Elsevier BV. http://dx.doi.org/10.1016/j.buildenv.2021.107711.

LÖBLER, C. A.; SCCOTI, A. A. V.; WERLANG, M. K. Contribuição à delimitação dos biomas Pampa e Mata Atlântica no município de Santa Maria, RS. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, Santa Maria, v. 19, n. 2, p. 1250-1257, 2015. ISSN: 22361170. Available at: https://periodicos.ufsm.br/index.php/reget/article/view/16038. Accessed on: Apr. 29, 2023.

LUND, H. The Design Reference Year User’s Manual. DTU Thermal Insulation Laboratory, Copenhagen, Denmark, 1991.

LUPATO, G.; MANZAN, M. Italian TRYs: new weather data impact on building energy simulations. Energy And Buildings, [S.L.], v. 185, p. 287-303, 2018. Elsevier BV. http://dx.doi.org/10.1016/j.enbuild.2018.12.001

MAMANI, T.; HERRERA, R.F.; MUÑOZ-LA RIVERA, F.; ATENCIO, E. Variables That Affect Thermal Comfort and Its Measuring Instruments: A Systematic Review. Issue 14, p. 1773, 2022. Sustainability. https://doi.org/10.3390/su14031773.

MARION, W.; URBAN, K. User’s manual for TMY2s typical meteorological years. Report Golden, CO: National Renewable Energy Laboratory, 1995. Available at: https://www.nrel.gov/docs/legosti/old/7668.pdf. Accessed on: Sept. 01, 2022.

NCDC. National Climatic Data Center. Test Reference Year (TRY): Tape Reference Manual, TD-9706, September 1976. Asheville, North Carolina: National Climatic Data Center, U.S. Department of Commerce, 1976.

PERNIGOTTO, G.; PRADA, A.; CAPPELLETTI, F.; GASPARELLA, A. Impact of Reference Years on the Outcome of Multi-Objective Optimization for Building Energy Refurbishment. Energies, [S.L.], v. 10, n. 11, p. 1925, 21 nov. 2017. MDPI AG. http://dx.doi.org/10.3390/en10111925.

PISSIMANIS, D.; KARRAS, G.; NOTARIDOU, V.; GAVRA, K. The generation of a typical meteorological year for the city of Athens. Solar Energy, v. 40, p. 405–411, 1988. https://doi.org/10.1016/0038-092X(88)90095-3.

PITTIGLIANI, M. Controle de qualidade de dados hidrometeorológicos do Simepar. In: Congresso Brasileiro de Meteorologia, 11. Rio de Janeiro. Anais eletrônicos... Rio de Janeiro: SBMET, 2000. Available at: http://www.cbmet.com. Accessed on: Sept. 01, 2022.

PYRGOU, A.; CASTALDO, V. L.; PISELLO, A. L.; COTANA, F.; SANTAMOURIS, M. On the effect of summer heatwaves and urban overheating on building thermal-energy performance in central Italy. Sustainable Cities and Society, 28, 187–200, 2017. https://doi.org/10.1016/j.scs.2016.09.012

ROSSATO, M. S. Os climas do Rio Grande do Sul: variabilidade, tendências e tipologia. Porto Alegre, UFRGS/PPGEA, Tese, 240 p., 2011. Available at: http://hdl.handle.net/10183/32620. Accessed on: Sept. 01, 2022.

SANTOS, A. C. Avaliação do desempenho potencial de duas soluções de revestimentos argamassados em função do risco de formação de fungos emboloradores no interior de edificações na cidade de São Paulo. Dissertação de Mestrado em Habitação: Planejamento e Tecnologia. Instituto de Pesquisas Tecnológicas do Estado de São Paulo- IPT, 2019. Available at: https://www.ipt.br/pos_graduacao_ipt/solucoes/dissertacoes/1139-avaliacao_do_desempenho_potencial_de_duas_solucoes_de_revestimentos_argamassados_em_funcao_do_risco_de_formacao_de_fungo.htm. Accessed on: Apr. 29, 2023.

SBSE. Society of Building Science Educators. Climate Consultant 6.0. Boston, USA, 2018. Available at: https://www.sbse.org/resources/climate-consultant. Accessed on: Sept. 01, 2022.

SKEIKER, K. Comparison of methodologies for TMY generation using 10 years data for Damascus, Syria, Energy Convers. Manag. v. 48, p.2090–2102, 2007. https://doi.org/10.1016/j.enconman.2006.12.014.

SORRENTINO, G.; FERRANTE, P.; FRANZITTA, V.; GENNUSA, M. L.; NICOLOSI, S., SCACCIANOCE, G.; VIOLA, A. Generation of a test reference year (TRY): An application to the town of Palermo. Advanced Materials Research, v. 622, p. 1835–1840, 2013. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.1835.

TAYLOR, J.; DAVIES, M.; MAVROGIANNI, A.; CHALABI, Z.; BIDDULPH, P.; OIKONOMOU, E.; DAS, P.; JONES, B. The relative importance of input weather data for indoor overheating risk assessment in dwellings, Building Environment 76, 81e91, 2014. https://doi.org/10.1016/j.buildenv.2014.03.010

TEIXEIRA, M. S. Caracterização física e dinâmica de episódios de chuvas intensas nas regiões sul e sudeste do Brasil. São José dos Campos, INPE, Tese, 2010. Available at: http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m18@80/2010/02.05.00.27/doc/publicacao.pdf. Accessed on: Apr. 29, 2023.

WMO. Weather Meteorological Organization. Climate. Geneve, 2022. Available at: https://public.wmo.int/en/our-mandate/climate. Accessed on: Sept. 01, 2022.

ZANONI, V. A. G. Influência dos agentes climáticos de degradação no comportamento higrotérmico de fachadas em Brasília. Tese (Doutorado em Arquitetura e Urbanismo) – Faculdade de Arquitetura e Urbanismo, Universidade de Brasília, Brasília, 2015. http://dx.doi.org/10.26512/2015.12.T.19579

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Liliane Bonadiman Buligon, Elaíse Gabriel, Selton Fernandes Sousa Lima, Giane Grigoletti, Daniel Gustavo Allasia Piccilli

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...