Vulnerabilidade à Poluição Antropogênica no Sistema Aquífero Dunas/Barreiras da Região Metropolitana de Natal
PDF-pt
PDF-en (English)

Palavras-chave

Geoprocessamento
Álgebra de Mapas
Vulnerabilidade Intrínseca
Litologia
Confinamento Hidráulico

Como Citar

MADROÑERO, F. D. R.; OLIVEIRA, F. S.; SOUZA, R. F.; NAVONI, J. A. Vulnerabilidade à Poluição Antropogênica no Sistema Aquífero Dunas/Barreiras da Região Metropolitana de Natal. Sociedade & Natureza, [S. l.], v. 34, n. 1, 2022. DOI: 10.14393/SN-v34-2022-63867. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/63867. Acesso em: 15 jan. 2025.

Resumo

Tradicionalmente, as águas subterrâneas têm sido consideradas protegidas pelo subsolo. No entanto, o descarte de poluentes estáveis ​​em zonas de infiltração favorável pode gerar contaminação do recurso hídrico, colocando em risco a saúde da população. Para solucionar a crescente contaminação de aquíferos por atividades antrópicas, a avaliação de vulnerabilidade é um dos requisitos fundamentais para gerar diretrizes, estratégias e políticas de prevenção e minimização da contaminação de águas subterrâneas. O presente estudo tem como objetivo avaliar a vulnerabilidade à poluição antropogênica nos aquíferos da Região Metropolitana de Natal. Nesta pesquisa foi utilizado o método GODS (Grau de confinamento, Ocorrência de substrato litológico, Distância da superfície do terreno ao nível da água subterrânea e tipo de Solo), que propõe um cálculo da vulnerabilidade por meio da multiplicação de quatro parâmetros geológicos e hidrológicos, os quais são: grau de confinamento hidráulico, ocorrência do substrato subjacente, distância ao nível da água subterrânea e tipo de solo. Foram usadas ferramentas de um Sistema de Informações Geográficas - SIG. Os resultados mostram que a maior parte do território está em um nível de vulnerabilidade baixo com 39,75%, em nível médio com 24,26%, seguido de um nível de vulnerabilidade extrema com 14,7%, 10,68% com nível alto e 10,61% insignificante. A pesquisa contribuiu para evidenciar como as características intrínsecas do aquífero Dunas-Barreiras da Região Metropolitana de Natal, permitem o transporte de poluentes até o lençol freático em algumas áreas como na zona costeira e nas porções mais baixas das bacias hidrográficas.

https://doi.org/10.14393/SN-v34-2022-63867
PDF-pt
PDF-en (English)

Referências

ANA - AGÊNCIA NACIONAL DE ÁGUAS. Estudos Hidrogeológicos Para A Orientação Do Manejo Das Águas Subterrâneas Da Região Metropolitana De Natal (RMN). Vol 1. ed. Brasil: Ministério do Meio Ambiente, 2012.

ANA - AGÊNCIA NACIONAL DE ÁGUAS. Conjuntura dos recursos hídricos no Brasil: Informe 2010. 2010.

ANA - AGÊNCIA NACIONAL DE ÁGUAS - ANA. Direito de águas à luz da governança - Volume 4. v. 4, p. 55, 2020.

BAALOUSHA, H. M. Mapping groundwater contamination risk using gis and groundwater modelling. A case study from the gaza strip, palestine. Arabian Journal of Geosciences, v. 4, n. 3–4, p. 483–494, 2011. https://doi.org/10.1007/s12517-010-0135-0

BANA E COSTA, C. A. et al. A Socio-technical Approach for Group Decision Support in Public Strategic Planning: The Pernambuco PPA Case. Group Decision and Negotiation, v. 23, n. 1, p. 5–29, 2014. https://doi.org/10.1007/s10726-012-9326-2

CHEN, W. et al. Sorption, degradation and mobility of microcystins in Chinese agriculture soils: risk assessment for groundwater protection. Environmental Pollution, v. 144, n. 3, p. 752–758, 2006. https://doi.org/10.1016/j.envpol.2006.02.023

CPRM; MINISTERIO DE MINAS E ENERGÍA. Programa de Água Subterrânea Para o Semi-Árido Brasileiro. p. 1–36, 2003.

DE ASSIS, E. M. et al. A vulnerabilidade de populações indígenas: qualidade da água consumida pela comunidade Maxakali, Minas Gerais, Brasil. Sociedade & Natureza, v. 32, p. 279–290, 2020. https://doi.org/10.14393/SN-v32-2020-43436

FORMAN, R. T. T. Urban Regions: Ecology and Planning beyond the City. Cambridge, UK; New York: [s.n.]. https://doi.org/10.1017/CBO9780511754982

FOSTER, S. et al. Protección de la calidad del agua subterránea. Guia para empresas de agua, autoridades municipales y agencias ambientales. Washington DC: Banco Mundial, 2002.

FOSTER, S. S. D.; HIRATA, R. C. A. Groundwater pollution risk assessment: a methodology using available data. [s.l.] Pan American Center for Sanitary Engineering and Environmental Sciences, 1988.

GARCIA, J. M. et al. Degradação ambiental e qualidade da água em nascentes de rios urbanos. Sociedade & Natureza, v. 30, n. 1, p. 228–254, 2018. https://doi.org/10.14393/SN-v30n1-2018-10

GAVIRIA, J. I.; BETANCUR, T. Avances metodológicos para evaluar el riesgo de contaminación de aguas subterráneas. p. 1–8, 2010.

HIRATA, R. et al. A revolução silenciosa das águas subterrâneas no Brasil. Uma análise da importância do recurso e os riscos pela falta de saneamento. Trata Bras ed. Brasil. 2019.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. Censo demográfico. Ministério ed. Brasil: [s.n.].

JARRÍN, A. E. et al. A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais. Revista Ambiente e Agua, v. 9, n. 3, p. 445–458, 2017. https://doi.org/10.4136/ambi-agua.1403

KHAIR, S. M. et al. Diverse drivers of unsustainable groundwater extraction behaviour operate in an unregulated water scarce region. Journal of Environmental Management, v. 236, n. February, p. 340–350, 2019. https://doi.org/10.1016/j.gsd.2018.10.004

LAVOIE, R. et al. Integrating groundwater into land planning: A risk assessment methodology. Journal of Environmental Management, v. 154, p. 358–371, 2015. https://doi.org/10.1016/j.jenvman.2015.02.020

LI, X. et al. Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China. Environmental Pollution, v. 218, p. 739–748, 2016. https://doi.org/10.1016/j.envpol.2016.07.070

LINHARES, F. M. et al. Avaliação da vulnerabilidade e do risco à contaminação das águas subterrâneas da bacia hidrográfica do rio Gramame (PB). Sociedade & Natureza, v. 26, n. 1, p. 139–157, 2014. https://doi.org/10.1590/1982-451320140110

MATZEU, A.; SECCI, R.; URAS, G. Methodological approach to assessment of groundwater contamination risk in an agricultural area. Agricultural Water Management, v. 184, p. 46–58, 2017. https://doi.org/10.1016/j.agwat.2017.01.003

MITJAVILA, M. R.; BRUNO, G. A ideia de risco nos estudos sobre a problemática da água no Brasil. Ambiente e Sociedade, v. 14, n. 1414753X, p. 139;151, 2011. https://doi.org/10.1590/S1414-753X2011000200010

PALMIOTTO, M. et al. Personal care products in surface, ground and wastewater of a complex aquifer system, a potential planning tool for contemporary urban settings. Journal of Environmental Management, v. 214, p. 76–85, 2018. https://doi.org/10.1016/j.jenvman.2017.10.069

PINHEIRO, L. G. et al. Avaliação da sustentabilidade do processo de dessalinização de água no semiárido potiguar: Estudo da comunidade Caatinga Grande. Sociedade & Natureza, v. 30, n. 1, p. 132–157, 2018. https://doi.org/10.14393/SN-v30n1-2018-6

PIZZOL, L. et al. Risk-based prioritization methodology for the classification of groundwater pollution sources. Science of the Total Environment, v. 506–507, p. 505–517, 2015. https://doi.org/10.1016/j.scitotenv.2014.11.014

PREFEITURA DO NATAL. Conheça Melhor Natal e Região Metropolitana. Revisão Pl ed. Natal - Brasil: [s.n.].

REGO, N et al. Vulnerabilidade intrínseca à contaminação natural do aquífero na região metropolitana de Salvador – Estado da Bahia, Brasil. Revista de Geociências do Nordeste. v. 7, nº 2. 2021. https://doi.org/10.21680/2447-3359.2021v7n2ID23210

SANTOS, S. et al. Qualidade da água na bacia hidrográfica urbana Cancela Tamandaí, Santa Maria/RS. Sociedade & Natureza, v. 30, n. 2, p. 23–44, 2018. https://doi.org/10.14393/SN-v30n2-2018-2

VASCONCELOS, M. et al. Avaliação do Potencial Risco de Contaminação das Águas Subterrâneas na Zona Norte de Natal, RN. Revista de Gestão de Água da América Latina, v. 15, n. 1, p. 13–13, 2018. https://doi.org/10.21168/rega.v15e13

WANG, J.; HE, J.; CHEN, H. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment, v. 432, p. 216–226, 2012. https://doi.org/10.1016/j.scitotenv.2012.06.005

YU, C. et al. Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. The Science of the total environment, v. 408, p. 6108–6116, 1 set. 2010. https://doi.org/10.1016/j.scitotenv.2010.09.002

ZHANG, Q. et al. Predicting the risk of arsenic contaminated groundwater in Shanxi Province, Northern China. Environmental Pollution, v. 165, p. 118–123, 2012. https://doi.org/10.1016/j.envpol.2012.02.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Felix David Rivera Madroñero, Felipe Silva Oliveira, Raquel Franco Souza, Júlio Alejandro Navoni

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...