Hydrosedimentological Connectivity in Watersheds: A Review of Concepts, Methods, and Models
PDF-en
PDF-pt (Portuguese)

Keywords

Fluvial Geomorphology
Hydrological Modeling
Connectivity Index

How to Cite

SILVA, Adonai Felipe Pereira de Lima; SOUZA, Jonas Otaviano Praça de. Hydrosedimentological Connectivity in Watersheds: A Review of Concepts, Methods, and Models. Sociedade & Natureza, [S. l.], v. 38, n. 1, 2026. DOI: 10.14393/SN-v38-2026-80083. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/80083. Acesso em: 6 feb. 2026.

Abstract

The increasing application of numerical models and indices has significantly expanded the understanding of hydrosedimentological connectivity in river basins, as it allows the representation of the dynamics of water and sediment redistribution and the assessment of the effects of land use and land cover changes. This study presents a systematic review of the main concepts, methods, and models employed in the analysis of hydrosedimentological connectivity, highlighting the evolution of mathematical modeling from classical theoretical formulations to the incorporation of computational tools widely used in the scientific literature. Among the models discussed, the Soil and Water Assessment Tool (SWAT), the Topographic Model (TOPMODEL), and MIKE 11 stand out, among others, evidencing their applications, potentialities, and limitations in the simulation of hydrosedimentological processes. In addition, connectivity indices are analyzed, with emphasis on the Index of Connectivity (IC), widely applied in estimating the potential transfer of sediments between different landscape compartments and within geomorphological units. Finally, the importance of validating models and indices through field observations and empirical data is emphasized, reinforcing the complementarity between computational modeling and experimental investigation for the advancement of geomorphological, hydrological, and hydrosedimentological studies in river basins, contributing to the improvement of environmental planning and integrated water resources management.

PDF-en
PDF-pt (Portuguese)

References

ALBUQUERQUE, C. C.; BRASIL, M. C. O.; MATEUS, N. P. A.; MACEDO, D. R.; RIBEIRO, S. M. C. Estimativa do Número da Curva (CN) e sua adaptação ao contexto das Paisagens Mineiras. Labor & Engenho, v. 15, p. 1–13, 2024. https://doi.org/10.20396/labore.v18i00.8673566

ALLEN, C. D. Chapter 2. Why Fieldwork? Developments in Earth Surface Processes, v. 18, n. 2006, p. 11-29, 2014. https://doi.org/10.1016/B978-0-444-63402-3.00002-9

ALMEIDA, J. D. M. DE; CORREA, A. C. D. B. Conectividade Da Paisagem E A Distribuição De Plainos Aluviais Em Ambiente Semiárido. Revista Brasileira de Geomorfologia, v. 21, n. 1, p. 171-183, 2020. https://doi.org/10.20502/rbg.v21i1.1663

ALMEIDA, L.; SERRA, J. C. V. Modelos hidrológicos, tipos e aplicações mais utilizadas. Revista da FAE, v. 20, n. 1, p. 129-137, 2017.

ARAÚJO, L. F.; CIRILO, J. A.; SILVA, J. B.; OLIVEIRA, D. S. Aplicação da Modelagem Hidrológica na Gestão dos Recursos Hídricos: Uma Revisão Sistemática. Revista Brasileira de Geografia Física, v. 04, p. 3095–3108, 2024. https://doi.org/10.26848/rbgf.v17.4.p3084-3098

AYSHA, A.; FAHIM, S. Hydrological modeling of the selected flash flood-prone rivers. Natural Hazards, v. 121, p. 3997–4021, 2024. https://doi.org/10.1007/s11069-024-06928-z

BAARTMAN, J. E. M.; NUNES, J. P.; MASSELINK, R.; DARBOUX, F.; BIELDERS, C.; DEGRÉ, A.; CANTREUL, V.; CERDAN, O.; GRANGEON, T.; FIENER, P.; WILKEN, F.; SCHINDEWOLF, M.; WAINWRIGHT, J. What do models tell us about water and sediment connectivity? Geomorphology, v. 367, art. 107300, 2020. https://doi.org/10.1016/j.geomorph.2020.107300

BATISTA, P. V. G.; FIENER, P.; SCHEPER, S.; ALEWELL, C. A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments. Hydrology and Earth System Sciences, v. 26, p. 1–32, 2021. https://doi.org/10.5194/hess-2021-231

BENNETT, A.; NIJSSEN, B.; OU, G.; CLARK, M.; NEARING, G. Quantifying Process Connectivity With Transfer Entropy in Hydrologic Models. Water Resources Research, v. 55, n. 6, p. 4613-4629, 2019. https://doi.org/10.1029/2018WR024555

BEVEN, K.; FREER, J. A dynamic topmodel. Hydrological Processes, v. 15, n. 10, p. 1993-2011, 2001. https://doi.org/10.1002/hyp.252

BEVEN, K.; KIRKBY, A Physically Based, Variable Contributing Area Model of Basin Hydrology. Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin, 24, p. 43-69, 1979. http://dx.doi.org/10.1080/02626667909491834

BIONDI, D.; FRENI, G.; IACOBELLIS, V.; MASCARO, G.; MONTANARI, A. Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice. Physics and Chemistry of the Earth, Parts A/B/C, v. 42-44, p. 70-76, 2012. https://doi.org/10.1016/j.pce.2011.07.037.

BLANTON, P.; MARCUS, W. A. Transportation infrastructure, river confinement, and impacts on floodplain and channel habitat, Yakima and Chehalis rivers, Washington, U.S.A. Geomorphology, v. 189, p. 55-65, 2013. https://doi.org/10.1016/j.geomorph.2013.01.016

BORSELLI, L.; CASSI, P.; TORRI, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena, v. 75, n. 3, p. 268-277, 2008. https://doi.org/10.1016/j.catena.2008.07.006

BOULTON, A. J.; ROLLS, R. J.; JAEGER, K. L; DATRY, T. Hydrological Connectivity in Intermittent Rivers and Ephemeral Streams. In: THIBAULT DATRY, NÚRIA BONADA, A. B. (Ed.). Intermittent Rivers and Ephemeral Streams: Ecology and Management. Academic Press, p. 79–108, 2017. https://doi.org/10.1016/B978-0-12-803835-2.00004-8

BRACKEN, L. J.; WAINWRIGHT, J.; ALI, G. A.; TETZLAFF, D.; SMITH, M. W.; REANEY, S. M.; ROY, A. G. Concepts of hydrological connectivity: Research approaches, Pathways and future agendas. Earth-Science Reviews, v. 18, p. 11-29, 2013. https://doi.org/10.1016/j.earscirev.2013.02.001

BRACKEN, L. J.; TURNBULL, L.; WAINWRIGHT, J.; BOGAART, P. Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, v. 40, n. 2, p. 177-188, 2015. https://doi.org/10.1002/esp.3635

BRACKEN, L. J.; CROKE, J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes, v. 21, n. 13, p. 1749-1763, 2007. https://doi.org/10.1002/hyp.6313

BRACKEN, L. J.; WAINWRIGHT, J. Geomorphological equilibrium: Myth and metaphor? Transactions of the Institute of British Geographers, v. 31, n. 2, p. 167-178, 2006. https://doi.org/10.1111/j.1475-5661.2006.00204.x

BRIERLEY, G.; FRYIRS, K.; BLUE, B. Reading the landscape: Integrating the theory and practice of geomorphology to develop place-based understandings of river systems. Progress in Physical Geography, v. 37, n. 5, p. 601-621, 2013. https://doi.org/10.1177/0309133313490007

BRIERLEY, G.; FRYIRS, K.; JAIN, V. Landscape connectivity: The geographic basis of geomorphic applications. Area, v. 38, n. 2, p. 165-174, 2006. https://doi.org/10.1111/j.1475-4762.2006.00671.x

CADOL, D.; WINE, M. L. Geomorphology as a first order control on the connectivity of riparian ecohydrology. Geomorphology, v. 277, p. 174-170, 2017. https://doi.org/10.1016/j.geomorph.2016.06.022

CAO, Z.; CARLING, P. A. Mathematical modelling of alluvial rivers: reality and myth. Part 1: General review. Proceedings of the Institution of Civil Engineers - Water and Maritime Engineering, v. 154, n. 3, p. 207-219, 2002. https://doi.org/10.1680/wame.2002.154.3.207

CAVALLI, M.; TREVISANI, S.; COMITI, F.; MARCHI, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, v. 188, p. 31-41, 2013. https://doi.org/10.1016/j.geomorph.2012.05.007

CAVALLI, M.; VERICAT, D.; PEREIRA, P. Mapping water and sediment connectivity. Science of the Total Environment, v. 673, p. 763-767, 2019. https://doi.org/10.1016/j.scitotenv.2019.04.071

CHURUKSAEVA, V.; STARCHENKO, A. Mathematical Modeling of a River Stream Based on a Shallow Water Approach. Procedia Computer Science, v. 66, p. 200-209, 2015. https://doi.org/10.1016/j.procs.2015.11.024

COVINO, T. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology, v. 277, p. 133-144, 2017. https://doi.org/10.1016/j.geomorph.2016.09.030

DA SILVA, R. M.; DANTAS, J. C.; BELTRÃO, J. A.; SANTOS, C. A. G. Hydrological simulation in a tropical humid basin in the cerrado biome using the SWAT model. Hydrology Research, v. 49, n. 3, p. 908-923, 2018. https://doi.org/10.2166/nh.2018.222

DANTAS, J. C.; SILVA, M. A.; SILVA, R. M.; VIANNA, P. C. G. Simulação vazão-erosão usando o modelo SWAT para uma grande bacia da região semiárida da paraíba. Geociencias, v. 34, n. 4, p. 816-827, 2015.

DWIVEDI, D.; POEPPL, R. E.; WOHL, E. Hydrological connectivity: a review and emerging strategies for integrating measurement, modeling, and management. Frontiers in Water, v. 7, art. 1496199, 2025. https://doi.org/10.3389/frwa.2025.1496199

FRYIRS, K. (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, v. 38, n. 1, p. 30-46, 2013. https://doi.org/10.1002/esp.3242

FRYIRS, K. A.; BRIERLEY, G. R.; PRESTON, N. J.; KASAI, M. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, v. 70, n. 1, p. 49-67, 2007. https://doi.org/10.1016/j.catena.2006.07.007

FRYIRS, K. A.; BRIERLEY, G. J. Geomorphic Analysis of River Systems: An Approach to Reading the Landscape. Chichester, UK: John Wiley & Sons, Ltd, 2012. https://doi.org/10.1002/9781118305454

GOUDARZI, S.; MILLEDGE, D.; HOLDEN, J. A Generalized Multistep Dynamic (GMD) TOPMODEL. Water Resources Research, v. 59, n. e2022WR032198, p. 1–27, 2023. https://doi.org/10.1029/2022WR032198

HECKMANN, T.; CAVALLI, M.; CERDAN, O.; FOERSTER, S.; JAVAUX, M.; LODE, E.; SMETANOVÁ, A.; VERICAT, D.; BRARDINONI, F. Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Science Reviews, v. 184, p. 77-108, 2018. https://doi.org/10.1016/j.earscirev.2018.08.004

HOOKE, J. Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology, v. 56, n. 1–2, p. 79-94, 2003. https://doi.org/10.1016/S0169-555X(03)00047-3

HOOKE, J.; SOUZA, J. Challenges of mapping, modelling and quantifying sediment connectivity. Earth-Science Reviews, v. 223, art. 103847, 2021. https://doi.org/10.1016/j.earscirev.2021.103847

HOOKE, J.; SOUZA, J.; MARCHAMALO, M. Evaluation of connectivity indices applied to a Mediterranean agricultural catchment. Catena, v. 207, art. 105713, 2021. https://doi.org/10.1016/j.catena.2021.105713

KALANTARI, Z.; CAVALLI, M.; CANTONE, C.; CREMA, S.; DESTOUNI, G. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Science of The Total Environment, v. 581–582, p. 386–398, 2017. https://doi.org/10.1016/j.scitotenv.2016.12.147

KARIM, F.; KINSEY-HENDERSON, A.; WALLACE, J.; GODFREY, P.; ARTHINGTON, A. H.; PEARSON, R. G. Modelling hydrological connectivity of tropical floodplain wetlands via a combined natural and artificial stream network. Hydrological Processes, v. 28, p. 5696–5710, 2014. https://doi.org/10.1002/hyp.10065

KEESSTRA, S.; NUNES, J. P.; SACO. P.; PARSONS, T.; POEPPL, R.; MASSELINK, R.; CERDÀ, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, v. 644, p. 1557-1572, 2018. https://doi.org/10.1016/j.scitotenv.2018.06.342

LIMA, J. DA S.; NUNES, D. D.; CHECCHIA, T. E. Aplicação do modelo SWAT como ferramenta para análises hidrossedimentológicas na bacia hidrográfica do Rio Mutum Paraná – RO. Geosul, v. 36, n. 78, 2021. https://doi.org/10.5007/2177-5230.2021.e66199

LÓPEZ-VICENTE, M.; BEN-SALEM, N. Computing structural and functional flow and sediment connectivity with a new aggregated index: A case study in a large Mediterranean catchment. Science of The Total Environment, v. 651, p. 179–191, 2019. https://doi.org/10.1016/j.scitotenv.2018.09.170

LUJANO, E.; DIAZ, R. D.; LUJANO, R.; SANCHEZ-DELGADO, M.; LUJANO, A. Hydrological performance of gridded meteorological products in Peruvian Altiplano basins. Revista Brasileira de Recursos Hídricos, v. 30, n. 2318-0331, e10, 2025. https://doi.org/10.1590/2318-0331.302520240068

MARTINS, L. L.; MARTINS, W. A.; MORAES, J. F. L.; JÚNIOR, M. J. P.; MARIA, I. C. Calibração hidrológica do modelo SWAT em bacia hidrográfica caracterizada pela expansão do cultivo da cana-de-açúcar. Revista Brasileira de Geografia Física, v. 13, n. 2, 2020. https://doi.org/10.26848/rbgf.v13.2.p576-594

MORENO-DE-LAS-HERAS, M.; MERINO-MARTÍN, L.; SACO, P. M.; ESPIGARES, T.; GALLART, F.; NICOLAU, J. M. Structural and functional control of surface-patch to hillslope runoff and sediment connectivity in Mediterranean dry reclaimed slope systems. Hydrology and Earth System Sciences, v. 24, p. 2855–2872, 2020. https://doi.org/10.5194/hess-24-2855-2020

MUKHARAMOVA, S. S.; YERMOLAEV, O. P.; VEDENEEVA, E. A. Modern Approaches to Mathematical Modeling of River Runoff in the Territory of the European Part of Russia. IOP Conference Series: Earth and Environmental Science, v. 107, art. 012017, 2018. https://doi.org/10.1088/1755-1315/107/1/012017

NAJAFI, S.; DRAGOVICH, D.; HECKMANN, T.; SADEGHI, S. H. Sediment connectivity concepts and approaches. Catena, v. 196, art. 104880, 2021. https://doi.org/10.1016/j.catena.2020.104880

NORTHROP, P. Stochastic Models of Rainfall. Annual Review of Statistics and Its Application, v. 11, p. 1–27, 2023. https://doi.org/10.1146/annurev-statistics-040622-023838

OGDEN, F. L. Geohydrology: Hydrological Modeling. In: ALDERTON, D.; ELIAS, S. (Eds.). Encyclopedia of Geology. Second ed. Academic Press, p. 457–476, 2021. https://doi.org/10.1016/B978-0-08-102908-4.00115-6

OLIVEIRA, W.; NERO, M. A.; MACEDO, D. Avaliação das principais variáveis que influenciam na conectividade de sedimentos com base em modelos aplicados. Geousp, v. 28, p. 1–19, 2024. https://doi.org/10.11606/issn.2179-0892.geousp.2024.196088

OUATIKI, H. BOUDHAR, A; OUHINOU, A; BELJADID, A.; LEBLANC, M.; CHEHBOUNI, A. Sensitivity and Interdependency Analysis of the HBV Conceptual Model Parameters in a Semi-Arid. Water, v. 12, p. 2440, 2020. https://doi.org/10.3390/w12092440

POEPPL, R. E.; FRYIRS, K. A.; TUNNICLIFFE, J.; BRIERLEY, G. B. Managing sediment (dis)connectivity in fluvial systems. Science of the Total Environment, v. 736, 2020. https://doi.org/10.1016/j.scitotenv.2020.139627

POEPPL, R. E.; KEESSTRA, S. D.; MAROULIS, J. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. Geomorphology, v. 277, art. 139627, 2017. https://doi.org/10.1016/j.geomorph.2016.07.033

PRINGLE, C. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes, v. 17, p. 2685 - 2689, 2003. https://doi.org/10.1002/hyp.5145

REID, S. C.; LANE, S. N.; MONTGOMERY, D. R.; BROOKES, C. J. Does hydrological connectivity improve modelling of coarse sediment delivery in upland environments? Geomorphology, v. 90, n. 3–4, p. 263-282, 2007. https://doi.org/10.1016/j.geomorph.2006.10.023

RENNÓ, C. D.; SOARES, J. V. Conceitos básicos de modelagem hidrológica. Santa Maria: INPE, 33 p., 2008. Disponível em: http://www.dpi.inpe.br/cursos/tutoriais/modelagem/cap2_modelos_hidrologicos.pdf. Acesso em: 19 mar. 2023.

RINK, K.; FISCHER, T.; SELLE, B.; KOLDITZ, O. A data exploration framework for validation and setup of hydrological models. Environmental Earth Sciences, v. 69, n. 2, p. 469–477, 2013. https://doi.org/10.1007/s12665-012-2030-3

SALGADO, A. A. R.; SALGADO, L. P. R. Hipóteses, observação e insights na evolução do conhecimento geomorfológico: a importancia do trabalho de campo. Caderno de Geografia, v. 31, n. 64, p. 64-74, 2020. https://doi.org/10.5752/P.2318-2962.2021v31n64p64

SCHOPPER, N.; MERGILI, M.; FRIGERIO, S.; CAVALLI, M.; POEPPL, R. Analysis of lateral sediment connectivity and its connection to debris flow intensity patterns at different return periods in the Fella River system in northeastern Italy. Science of the Total Environment, v. 658, p. 1586-1600, 2019. https://doi.org/10.1016/j.scitotenv.2018.12.288

SIDLE, R. C. Strategies for smarter catchment hydrology models: incorporating scaling and better process representation. Geoscience Letters, v. 8, n. 24, p; 24, 2021. https://doi.org/10.1186/s40562-021-00193-9

SILVA, A. F. P. DE L. Análise Hidrossedimentológica e Geoquímica dos Ambientes Aluviais da Bacia Riacho do Tigre, Semiárido Paraibano. João Pessoa: Dissertação de Mestrado, Programa de Pós-Graduação em Geografia, Universidade Federal da Paraíba, 117 p, 2019.

SILVA, A. F. P. DE L.; SOUZA, J. O. P. DE. Caracterização Hidrossedimentológica Dos Trechos Aluviais Da Bacia Riacho Do Tigre – PB. Caminhos de Geografia, v. 18, n. 63, p. 57–89, 2017. https://doi.org/10.14393/RCG186303

SOUZA, J. O. P. DE; ALMEIDA, J. D. M. DE. PROCESSOS FLUVIAIS EM TERRAS SECAS: UMA REVISÃO. OKARA: Geografia em debate, v. 9, n. 1, p. 108-122, 2015.

SOUZA, J. O. P. DE; CORREA, A. C. B. Conectividade e área de captação efetiva de um sistema fluvial semiárido: bacia do riacho Mulungu, Belém de São Francisco-PE. Sociedade & Natureza, v. 24, n. 2, p. 319-332, 2012. https://doi.org/10.1590/S1982-45132012000200011

SOUZA, P. A.; MARÇAL, M. DOS S. Hidrossedimentologia E Conectividade Do Rio Macaé, Norte Do Estado Do Rio De Janeiro, Brasil. Geo UERJ, n. 27, p. 176-201, 2015. https://doi.org/10.12957/geouerj.2015.16436

US ARMY CORPS OF ENGINEERS (USACE). HEC-RAS River Analysis System: 2D Modeling User’s Manual. Version 6.4.1. Davis, CA: Institute for Water Resources, Hydrologic Engineering Center, 2023. Disponível em: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%20User's%20Manual-v6.4.1.pdf. Acesso em: 11 mar. 2024.

WAINWRIGHT, J.; TURNBULL, L.; IBRAHIM, T. G.; LEXARTZA-ARTZA, I.; THORNTON, S. F.; BRAZIER, R. E. Linking environmental régimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, v. 126, n. 3–4, p. 387-404, 2011. https://doi.org/10.1016/j.geomorph.2010.07.027

WOHL, E. Connectivity in rivers. Progress in Physical Geography, v. 41, n. 3, p. 345-362, 2017. https://doi.org/10.1177/0309133317714972

WOHL, E.; BRIERLEY, G.; CADOL, D.; COULTHARD, T. J.; COVINO, T.; FRYIRS, K. A.; GRANT, G.; HILTON, R. G.; LANE, S. N.; MAGILLIGAN, F. J.; MEITZEN, K. M. Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, v. 44, n. 1, p. 4-26, 2019. https://doi.org/10.1002/esp.4434

ZANANDREA, F.; PAUL, L. R.; MICHEL, G. P.; KOBIYAMA, M.; ZANINI, A. S.; ABATTI, B. H. Conectividade Dos Sedimentos: Conceitos, Princípios E Aplicações. Revista Brasileira de Geomorfologia, v. 21, n. 2, p. 435-459, 2020. https://doi.org/10.20502/rbg.v21i2.1754

ZANANDREA, F.; MICHEL, G. P.; KOBIYAMA, M.; CENSI, G.; ABATTI, B. H. Spatial-temporal assessment of water and sediment connectivity through a modified connectivity index in a subtropical mountainous catchment. Catena, v. 204, art. 105380, 2021. https://doi.org/10.1016/j.catena.2021.105380

ZANANDREA, F.; KOBIYAMA, M.; MICHEL, G. P. Conceitual hydrosedimentological connectivity: a conceptual approach. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 22., Florianópolis. Anais […]. Porto Alegre: Associação Brasileira de Recursos Hídricos, 2017. p. 1–8.

ZANIN, P. R.; BONUMA, N. B.; CORSEUIL, C. W. Hydrosedimentological modeling with SWAT using multi-site calibration in nested basins with reservoirs. Revista Brasileira de Recursos Hídricos, v. 23, art. e54, 2018. https://doi.org/10.1590/2318-0331.231820170153

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Adonai Felipe Pereira de Lima Silva, Jonas Otaviano Praça de Souza

Downloads

Download data is not yet available.