Abstract
This study analyzed the relationship between Suspended Sediment Concentration (SSC), rainfall, and water discharge in four large basins that drain entirely cratonic areas: Negro, Branco, and Tapajós, in the Amazon basin, and Congo, in Central Africa. We analyzed 1,323 samples of suspended sediment concentration (SSC) combined with precipitation and discharge data. A combination of statistical correlation parameters, time lag analysis, and hysteresis evaluation were calculated to identify the main controls on the SSC of cratonic rivers. Results indicate strong heterogeneity in sediment dynamics among the rivers. The Branco River displayed linear relationships between SSC and hydrological variables, moderate clockwise hysteresis and no lag, confirming a hydrologically reactive system with rapid sediment mobilization. In contrast, the Negro and Tapajós Rivers showed low linear correlations and moderate to high lag values, suggesting non-linear sediment responses associated with dilution, storage and geomorphological controls. However, the Negro River exhibited moderate anticlockwise hysteresis (HI = −0.20), negative lag values and low partial correlation, suggesting delayed sediment response, floodplain storage and dilution during high flows. The Congo River exhibited strong partial correlation with rainfall but lacked hysteresis and presented long lag values (−8 to −10 months), indicating that SSC responds predominantly at interannual climatic scales rather than to annual discharge cycles. Geological differences among basins proved crucial: rivers draining deeply weathered cratonic areas (Negro, Tapajós and Congo) showed dissipated sediment signals, whereas the Branco River, partially draining erodible Quaternary deposits, exhibited strong hydrological coupling. By combining multiple approaches, the study provides a framework for understanding sediment transport in cratonic rivers and contributes to sediment budgeting, climate-change assessments and geomorphological modeling in tropical basins.
References
ACHITE, M.; OUILLON, S. Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970‐2010). Hydrology and Earth System Sciences, v. 20, n.4, p. 1355–1372, 2016. https://doi.org/10.5194/hess‐20‐1355‐2016
ARMIJOS, E.; CRAVE, A.; ESPINOZA, J. C.; FILIZOLA, N. P.; ESPINOZA-VILLAR, R.; AYES, I.; FONSECA, P.; FRAIZY, P.; GUTIERREZ, O.; VAUCHEL, P.; CAMENEN, B.; MARTIINEZ, J. M.; SANTOS, A.; SANTINI, W.; COCHONNEAU, G.; GUYOT, J. L. Rainfall control on Amazon sediment flux: synthesis from 20 years of monitoring. Environmental Research Communications, v. 2, 2020. https://doi.org/10.1088/2515-7620/ab9003
BANDEIRA, I. C. N.; ADAMY, A.; ANDRETTA, E. R.; CONCEIÇÃO, R. A. C.; ANDRADE, M. M. N. Terras Caídas: Fluvial erosion or distinct phenomenon in the Amazon? Environmental Earth Sciences, v. 77, 2018. https://doi.org/10.1007/s12665-018-7405-7
CAVALCANTI, R. B. L.; FERRERIO, D. B. S.; PONTES, P. R. M.; TADESCHI, R. G.; COSTA, C. P. W.; SOUZA, E. B. Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmospheric Research, v. 28, n. 104879, 2020. https://doi.org/10.1016/j.atmosres.2020.104879
CHAPMAN, D. Water Quality Assessments-A Guide to Use of Biota, Sediments and Water in Environmental Monitoring. Second Edition. 1992, London, 651p. https://doi.org/10.4324/9780203476710
COULET, P.; DURAND, F.; FASSONI-ANDRANDE, A.; KHAN, J.; TESTUT, L.; TOUBLANC, F.; SANTOS, L. G.; MOREIRA, D. M. Assessment of the hydrodynamical signature of the record-breaking 2021 flood along the Amazon estuary. Ocean Modelling, v. 196, p. 1-15, 2025. https://doi.org/10.1016/j.ocemod.2025.102536
FILIZOLA N.; GUYOT J. L. Suspended Sediment Yield in the Amazon Basin: an Assessment Using Brazilian National Data Set. Hydrological Processes, v. 23, n. 22, 32073215, 2009. https://doi.org/10.1002/hyp.7394
FUNK, C.; PETERSON, P.; LANDSFELD, M.; PEDREROS, D.; VERDIN, J.; SHUKLA, S.; HUSAK, G.; ROWLAND, J.; HARRISON, L.; HOELL, A. MICHAELSEN, J. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, v. 2, p. 150066, 2015. https://doi.org/10.1038/sdata.2015.66
GARCÍA-RUIZ, J. M.; BEGUERÍA, S.; NADAL-ROMERO, E.; GONZÁLEZ-HIDALGO, J. C.; LANA-RENAULT, N.; SANJUÁN, Y. A meta-analysis of soil erosion rates across the world. Geomorphology, v. 239, p. 160-173, 2015. https://doi.org/10.1016/j.geomorph.2015.03.008
GHOSH, K.; MUNOZ‐ARRIOLA, F. Hysteresis and streamflow‐sediment relations across the pre‐to‐post dam construction continuum in a highly regulated transboundary Himalayan River basin. Journal of Hydrology, v. 624, n. 129885, 2023. https://doi.org/10.1016/j.jhydrol.2023.129885
HADDADCHI, A.; HICKS, M. Interpreting event‐based suspended sediment concentration and flow hysteresis patterns. Journal of Soils and Sediments, v. 21, n.
1, p. 592–612, 2021. https://doi.org/10.1007/s11368‐020‐02777‐y
HARDING, R.; BEST, M.; BLYTH, E.; HAGEMANN, S.; KABAT, P.; TALLAKSEN, L. M.; WARNAARS, T.; WIBERG, D.; WEEDON, G. P.; VAN LANEN, H.; LUDWIG, F.; HADDELAND, I. WATCH: current knowledge of the terrestrial global water cycle. Journal of Hydrometeorology, v. 12, p. 1149–1156, 2011. https://doi.org/10.1175/JHM-D-11-024.1
JING, T.; ZENG, Y.; FANG, N.; DAI, W.; SHI, Z. A Review of Suspended Sediment Hysteresis. Water Resources Research, v. 61, 2025. https://doi.org/10.1029/2024WR037216
LATRUBESSE, E. M.; STEVAUX, J. C.; SINHA, R. Tropical Rivers. Geomorphology, v. 70, p.187–206, 2005. https://doi.org/10.1016/j.geomorph.2005.02.005
LATRUBESSE, E. M.; STEVAUX, J. C. The Anavilhanas and Mariuá Archipelagos: Fluvial Wonders from the Negro River, Amazon Basin. In: Vieira, B. C.; Salgado, A. A. R.; Santos, L.J.C. (Eds.), Landscapes and Landforms of Brazil, Springer, Dordrecht, p.157–169, 2015. https://doi.org/10.1007/978-94-017-8023-0_14
LEENMAN, A.; GREENBERG, E.; MOULDS, S.; WORTMANN, M.; SLATER, L.; GANTI, V. Accelerated River mobility linked to water discharge variability. Geophysical Research Letters, v. 52, 2025, https://doi.org/10.1029/2024GL112899
LI, L.; NI, J.; CHANG, F.; YUE, Y.; FROLOVA, N.; MAGRITSKY, D.; BORTHWICK, A. G. L.; CIAIS, P.; WANG, Y.; ZHENG, C.; WALLING, D. E. Global trends in water and sediment fluxes of the world’s large rivers. Science Bulletin, v. 65, p. 62-69, 2024. https://doi.org/10.1016/j.scib.2019.09.012
LYU, Y.; FAGHERAZZI, S.; ZHENG, S.; TAN, G.; SHU, C. Enhanced hysteresis of suspended sediment transport in response to upstream damming: An example of the middle Yangtze River downstream of the Three Gorges Dam. Earth Surface Processes and Landforms, v. 45, n. 8, p. 1846–1859, 2020. https://doi.org/10.1002/esp.4850
MACIEL, D. A.; LOUSADA, F.; FASSONI-ANDRADE, A.; QUEVEDO, R. P.; BARBOSA, C. F.; PAULE-BONNET, M.; NOVO, E. M. L. M. Sentinel-1 data reveals unprecedented reduction of open water extent due to 2023-2024 drought in the central Amazon basin. Environmental Research Letters, v. 19, 2024. https://doi.org/10.1088/1748-9326/ad8a71
MACIEL, J. S. C.; ALVES, L. G. S.; OLIVEIRA, B. F.; SENNA, R. C.; ALBUQUERQUE, V. S. What Happened in 2021? Analyzing the Biggest Negro River Flood in Manaus, Brazil. WIT Transactions on The Built Environment v. 208, p. 3-14, 2022. https://doi.org/10.2495/FRIAR220011
MARINHO, R. R.; FILIZOLA, N. P.; CREMON, É. H. Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water, v. 12, n. 1073, 2020. https://doi.org/10.3390/w12041073
MARINHO, R. R.; FILIZOLA, N. P.; MARTINEZ, J.M.; HARMEL, T. Suspended sediment transport estimation in Negro River (Amazon Basin) using MSI/Sentinel-2 data. Revista Brasileira de Geomorfologia, v. 23, 2022. https://doi.org/10.20502/rbg.v23i1.2076
MARINHO, R. R.; RIVERA, I. A. A Precipitação Estimada por Satélite na Bacia do Rio Negro, Noroeste Amazônico (1981-2017). RAEGA - O Espaço Geográfico em Análise, v. 50, p. 44–61, 2021. https://doi.org/10.5380/raega.v50i0.67426
QUEIROZ, M. S.; MARINHO, R. R.; CARVALHO, J. A. L.; SILVA, C. F. The geomorphological landscape of the Mariuá Archipelago: An anabranching megacomplex system in the Negro River, Amazon Basin (Brazil). Geomorphology, v. 490, 2025. https://doi.org/10.1016/j.geomorph.2025.110023
QUEIROZ, M. S.; MARINHO, R. R.; ALVES, N. S.; RODRIGUES, C. Arquipélago de Anavilhanas: Uma revisão das suas formas, processos e origem. Revista Geonorte, v. 15, 2024a. https://doi.org/10.21170/geonorte.2024.V.15.N.48.166.198
QUEIROZ, M. S.; SOARES, A. P. A.; TOMAZ NETO, A. G. Comunidades rurais ribeirinhas e as águas do rio Solimões no município de Iranduba – Amazonas. Revista Brasileira de Meio Ambiente, v. 4, p.108-119, 2018.
QUEIROZ, M. S.; MARINHO, R. R. Congo River: Analysis of Suspended Sediment Flux in a Multichannel Megasystem in Central Africa. RAEGA - O Espaço Geográfico Em Análise, v. 61, p. 153–172, 2024. https://doi.org/10.5380/raega.v61i1.96047
QUEIROZ, M. S.; MARINHO, R. R.; SEVERO, E. B. Fluxo de Sedimento em Suspensão do Rio Demini, Noroeste Amazônico. Revista Contexto Geográfico v. 9, 2024b. https://doi.org/10.28998/contegeo.9i.20.17662
RIVERA, I.; CALLAU PODUJE, A.C.; MOLINA-CARPIO, J.; AYALA, J.M.; ARMIJOS CARDENAS, E.; ESPINOZA-VILLAR, R.; ESPINOZA, J.C.; GUTIERREZ-CORI, O.; FILIZOLA, N. On the Relationship between Suspended Sediment Concentration, Rainfall Variability and Groundwater: An Empirical and Probabilistic Analysis for the Andean Beni River, Bolivia (2003–2016). Water, v. 11, p. 2497, 2019. https://doi.org/10.3390/w11122497
SAFDAR, R.; TAHIR, S.; SHAHBAZ, M. Urbanization and suspended sediment transport dynamics: A comparative study of watersheds with different land uses. Water, v. 4, n. 1, p. 334–344, 2024. https://doi.org/10.1021/acsestwater.3c00328
SATYAMURTY, P.; COSTA, C. P. W.; MANZI, A. O.; CANDIDO, L. A. A quick look at the 2012 record flood in the Amazon Basin. Geophysical Research Letters, v. 40, p. 1396–1401, 2013. https://doi.org/10.1002/grl.50245
SCHENK, C. J.; VIGER, R.; ANDERSON, C. P. South America Geologic Map (geo6ag). U.S. Geological Survey data release, 1999. https://doi.org/10.5066/P9A3OJ9B
STEVAUX, J. C.; LATRUBESSE, E. Geomorfologia Fluvial. Oficina de Textos: São Paulo, 2017.
ULIANA, E. M.; SOUSA, M. F.; ARAUJO, J. A.; AIRES, U. R. V.; SILVA, D. D.; ZANUZO, M. R.; CRUZ, I. F. Validação e análise espaço-temporal de dados de precipitação obtidos por sensoriamento remoto CHIRPS para o estado de Mato Grosso, Brasil. Revista Brasileira de Climatologia, v. 35, n. 20, p. 630–654, 2024. https://doi.org/10.55761/abclima.v35i20.18858
VERCRUYSSE, K.; GRABOWSKI, R. C.; RICKSON, R. J. Suspended sediment transport dynamics in rivers: Multi‐scale drivers of temporal variation. Earth‐Science Reviews, v. 166, p. 38–52, 2017. https://doi.org/10.1016/j.earscirev.2016.12.016
WIT, M. J.; LINOL, B. Precambrian Basement of the Congo Basin and Its Flanking Terrains. In: Wit, M.; Guillocheau, F.; Wit, M. (Eds.). Geology and Resource Potential of the Congo Basin. Regional Geology Reviews, Springer, Berlin, Heidelberg, 2015. https://doi.org/10.1007/978-3-642-29482-2_2
WOHL, E. An integrative conceptualization of floodplain storage. Reviews of Geophysics, v. 59, n. 2, 2021. https://doi.org/10.1029/2020RG000724
ZUECCO, G.; PENNA D.; BORGA, M.; VAN MEERVELD, H. J. A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. Hydrological Processes, v. 30, n. 9, p. 1449–1466, 2016. https://doi.org/10.1002/hyp.10681

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Matheus Silveira de Queiroz
