Abstract
The Paraopeba River Basin, located in the state of Minas Gerais, Brazil, has been severely impacted by extreme climatic events and the 2019 Vale S.A. dam failures in Brumadinho. This study underscores the importance of integrating multi-criteria decision analysis with a conceptual model to diagnose water security in the region based on socio-environmental indicators. Employing the DPSIR methodology, socio-environmental indicators are proposed and analyzed to assess water security and to support the planning and management of water resources in the Paraopeba River Basin (BHRP). The approach combines the TOPSIS multi-criteria analysis model with the entropy weight method to rank municipalities according to their levels of water security. The analysis identified critical challenges, including population growth, industrialization, and agricultural expansion, which exacerbate water contamination. Brumadinho and Betim emerged as the most vulnerable municipalities, exhibiting high rates of waterborne diseases and inadequate wastewater treatment infrastructure. Intense industrial and agricultural activities have further heightened environmental risks, as exemplified by the dam failures. The study underscores socio-environmental pressures and highlights the importance of integrated approaches. The findings emphasize the need for robust public policies, sustainable agricultural practices, participatory management, infrastructure improvements, and climate change adaptation to ensure water security and improve quality of life.
References
ACOSTUPA, Y.; ARÉSTEGUI, D.; CASTRO, E.; CHOQUEVILCA, W.; GUZMÁN, G.; SÁNCHEZ, P. Aplicación de la metodología FPEIR al diagnóstico ambiental del Humedal Lucre-Huacarpay, 2017. Yachay - Revista Científico Cultural, v. 6, n. 01, p. 90–114, 2018. https://doi.org/10.36881/yachay.v6i01.33
AIRES, R. F. DE F.; SALGADO, C. C. R. A TOPSIS-Based Multicriteria Approach for Reservoir Assessment. Sociedade & Natureza, v. 36, n. e70948, p. 14, 2024. https://doi.org/10.14393/SN-v36-2024-70948.
ALVES, A. P. de A.; FÉLIX, A. C. T.; BARBOSA, D. L.; BRANDÃO, I. A. de P.; PAZ, M. A. de F.; DA CRUZ, S. G. Análise da relação do Índice de Segurança Hídrica com indicadores socioeconômicos em microrregiões de água e esgoto, no Estado da Paraíba, Brasil. Caderno Pedagógico, [S. l.], v. 21, n. 1, p. 840–861, 2024. https://doi.org/10.54033/cadpedv21n1-043
ARAÚJO, M. D. de; RIBEIRO, M. M. R.; BRAGA, C. F. C. Integrando a modelagem da alocação de água ao sistema de indicadores FPEIR: aplicação ao semiárido do Brasil. Engenharia Sanitária e Ambiental, v. 24, n. 6, p. 1167–1181, 2019. https://doi.org/10.1590/S1413-41522019184425.
ARMBH. Agência de Desenvolvimento da Região Metropolitana de Belo Horizonte. Governo de Minas publica edital de licitação do Plano de Segurança Hídrica da RMBH, Belo Horizonte, p. 12, 2021. Disponível em: http://www.agenciarmbh.mg.gov.br/wp-content/uploads/2022/05/ARMBH_RMBH_PSH_RF001_R01.pdf. Acesso em: 23 abr. 2023
CARNERO, M. C. Fuzzy TOPSIS Model for Assessment of Environmental Sustainability: A Case Study with Patient Judgements. Mathematics, v. 8, n. 11, 2020. https://doi.org/10.3390/math8111985
COBRAPE, Companhia Brasileira de Projetos e Empreendimentos. Plano Diretor da Bacia Hidrográfica do Rio Paraopeba/São Paulo. 2020. Disponível em: http://www.repositorioigam.meioambiente.mg.gov.br/jspui/handle/123456789/4272. Acesso em: 20 maio 2023.
COPAM, Conselho Estadual de Política Ambiental. Deliberação Normativa nº 08/22. 2022. https://www.siam.mg.gov.br/sla/download.pdf?idNorma=56521. Acesso em: 12 jun. 2023.
ELSHOUBAKY, S.; ELBELTAGI, E.; ELRAHMAN, M. A.; ELMASOUDI, I. System Dynamics and TOPSIS Models for Sustainable Building Materials Selection Considering Life Cycle Assessment. Mansoura Engineering Journal, v. 48, n. 1, 2023. https://doi.org/10.58491/2735-4202.3026
HONORATO, P. A. R. A contribuição do modelo FPEIR/TOPSIS no diagnóstico ambiental da segurança hídrica do médio curso do Rio Paraopeba, MG. Orientador: Antônio Marcos Timbó Elmiro. 2024. 135 f. Dissertação (Mestrado) – Departamento de Geociências, UFMG. Disponível em: http://hdl.handle.net/1843/77479. Acesso em: 08 ago. 2024
HWANG, C.-L.; YOON, K. Multiple attribute decision making: Methods and applications. A state-of-the-art survey. 1. ed. Springer-Verlag. Lecture Notes in Economics and Mathematical Systems, 1981. https://doi.org/10.1007/978-3-642-48318-9.
IBGE. Malhas territoriais. 2022. Disponível em: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html. Acesso em: 21 jan. 2022
IPT. Instituto de Pesquisa Tecnológica. Diagnóstico da situação dos recursos hídricos na Bacia Hidrográfica do Rio Grande (BHRG) – SP/MG (Relatório Síntese – R3). São Paulo: IPT, 2008. Disponível em: https://sigrh.sp.gov.br/public/uploads/documents/7113/diagnostico_sintese.pdf. Acesso em: 26 ago. 2023.
LIMA, R. P., ELMIRO, M. A. T., NERO, M. A., TEMBA, P. DA C., FONSECA, B. M.,CASTIGLIONE, L. H. G. Assessment of Digital Terrain Models in Dam Break Simulation Studies. Boletim de Ciências Geodésicas, 27(spe), 2021. https://doi.org/10.1590/s1982-21702021000100005
LIU, X.; LIU, H.; CHEN, J.; LIU, T.; DENG, Z. Evaluating the sustainability of marine industrial parks based on the DPSIR framework. Journal of Cleaner Production, v. 188, p. 158–170, 2018. https://doi.org/10.1016/j.jclepro.2018.03.271
LUO, Z.; ZHOU, Z.; HAO, Y. Establishment of an indicator framework for the transmission risk of the mountain-type zoonotic visceral leishmaniasis based on the Delphi-entropy weight method. Infect Dis Poverty, v. 11, n. 122, 2022. https://doi.org/10.1186/s40249-022-01045-0.
NERO M. A., DE MORAIS, V. T. P., ELMIRO M. A. T, GARCIA, R. A., CINTRA, J. P., MANCIPEMUÑOZ, N. A. Assessment of the influence of DTM quality on dam rupture simulation processes. MOJ Ecology & Environmental Sciences (MOJES), v. 9, n. 2 p. 61 – 70, 2024. https://doi.org/10.15406/mojes.2024.09.00308
PIRRONE, N.; TROMBINO, G.; CINNIRELLA, S.; ALGIERI, A.; BENDORICCHIO, G.; PALMERI, L. The Driver-Pressure-State-Impact-Response (DPSIR) approach for integrated catchment-coastal zone management: preliminary application to the Po catchment-Adriatic Sea coastal zone system. Regional Environmental Change, v. 5, n. 2–3, p. 111–137, jun. 2005. https://doi.org/10.1007/s10113-004-0092-9
RAPPORT, D.; FRIEND, A. Towards a comprehensive framework for environmental statistics: a stress-response approach. Orientador: Anthony Friend. 1979. 90f. Monograph - Statistics Canada. Disponível em: https://publications.gc.ca/site/eng/9.896799/publication.html. Acesso em: 18 ago. 2023
SALAMÉ, L.; BOGARDI, J. J.; SEBESVARI, Z.; TOCKNER, K.; YAZICI, B. Drivers, Pressures and Stressors: The Societal Framework of Water Resources Management. Handbook of Water Resources Management: Discourses, Concepts and Examples, [s. l.], p. 329–364, 2020. https://doi.org/10.1007/978-3-030-60147-8_11
SISEMA. Sistema Estadual de Informações Ambientais de Minas Gerais, 2021. Disponível em: https://idesisema.meioambiente.mg.gov.br/webgis. Acesso em: 21 jan. 2023.
SHANNON, C. E.; WEAVER, W. The Mathematical Theory of Communication. Urbana: University of Illinois Press, 1949. Disponível em: https://pure.mpg.de/rest/items/item_2383164/component/file_2383163/content. Acesso em: 26 ago. 2023
SHI, S.; TAO, X.; CHEN, X.; CHEN, H; FITRI, A.; YANG, X. Evaluation of urban water security based on DPSIR model. IOP Conference Series: Earth and Environmental Science, v. 880, n. 1, p. 012023, 2021. https://doi.org/10.1088/1755-1315/880/1/012023
YANG, J.; XING, S.; QIU, R; CHEN, Y.; HUA, C.; DONG, D. Mathematical Problems in Engineering Decision-Making Based on Improved Entropy Weighting Method: An Example of Passenger Comfort in a Smart Cockpit of a Car. Mathematical Problems in Engineering, v. 1, n. 1, 2022. https://doi.org/10.1155/2022/6846696
YIN, J.; YUAN, J. DPSIR-TOPSIS Model-Based Assessment of Green Development Performance in Beijing, Tianjin, and Hebei. Advances in Engineering Technology Research, v. 1, n. 2, p. 554–559, 2022. https://doi.org/10.56028/aetr.2.1.544
UN. UNITED NATIONS. Water Security & the Global Water Agenda. A UN-Water Analytical Brief. Canada: ONU, 2013. Disponível em: https://www.unwater.org/publications/water-security-and-global-water-agenda. Acesso em: 26 ago. 2023.
VALE S.A. Balanço da Reparação: 1º Semestre de 2022. 2022. Disponível em: https://vale.com/documents/d/guest/val3862-2_revista-balanco-da-reparacao-1-sem-22_final. Acesso em: 15 mai. 2024.
ZHANG, P.; ZHANG, J.; GE, R.; ZHOU, Q. The impact of agricultural international trade on agro-ecological environment based on TOPSIS model. Applied Mathematics and Nonlinear Sciences, v. 8, n. 2, 2023. https://doi.org/10.2478/amns.2023.1.00297
ZLATI, M. L. ANTOHI, V. M.; IONESCU, R. V.; ITICESCU, C.; GEORGESCU, L. P. Quantifying the impact of the water security index on socio-economic development in EU27. Socio-Economic Planning Sciences, v. 93, p. 101912, 2024. https://doi.org/10.1016/j.seps.2024.101912
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Priscila Aparecida da Rocha Honorato, Marcos Antonio Timbó Elmiro, Marcelo Antonio Nero, Plinio da Costa Temba, Helder Lages Jardim