Changes in Soil Organic Carbon Stocks Due to Land Use Changes in the Extended São Francisco River Basin
PDF-en

Keywords

Remote sensing
Climate change mitigation
Sustainable management

How to Cite

SANTOS, S. C. dos; BRITO, H. C. de; RUFINO, I. A. A.; MAIA, S. M. F. Changes in Soil Organic Carbon Stocks Due to Land Use Changes in the Extended São Francisco River Basin. Sociedade & Natureza, [S. l.], v. 36, n. 1, 2023. DOI: 10.14393/SN-v36-2024-69655. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/69655. Acesso em: 9 sep. 2024.

Abstract

As the largest carbon reservoir in terrestrial ecosystems, soils play a critical role in food production, mitigation and adaption to climate change, and sustainability of agroecosystems. In this context, the aim of this study is to estimate variations in soil carbon stocks resulting from land use and management changes in different biomes that compose the Bacia Estendida do Rio São Francisco (BESF - Extended São Francisco River Basin), between 1985 and 2017. For this, remote sensing data and information from the IBGE agriculture and livestock census were used, in addition to emission factors to estimate soil organic carbon (SOC) changes. The results indicate that BESF had about 5.70 million ha degraded in the analyzed period, in addition to an increase of 0.72 Tg C year-1 in SOC stocks. The sub-medium São Francisco River basin recorded the highest SOC gain, with an increase of 0.54 Tg C ha-1; on the other hand, the sub-medium São Francisco River sub-basin had the greatest SOC losses, with an estimated reduction of 0.07 Tg C year-1. In short, this study provides important evidence on changes in SOC stocks in the region, emphasizing the importance of native vegetation conversion to agriculture and livestock systems under sustainable soil management for mitigating greenhouse gas emissions and maintaining soil quality.

https://doi.org/10.14393/SN-v36-2024-69655
PDF-en

References

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, p. 711-728, 2013.

ARAÚJO, F. S.; LEITE, L. F. C.; SOUZA, Z. M.; TORRES, J. L. R.; COSTA, A. S. H. B.; FERREIRA, A. H. C. Fertility and total organic carbon in Oxisol under different management systems in savannah of Piaui, Brazil. Tropical and Subtropical Agroecosystems. v. 20, p. 165-172, 2017. https://doi.org/10.1127/0941-2948/2013/0507

BAKER, J. M.; OCHSNER, T. E.; VENTEREA, R. T.; GRIFFIS, T. J. Tillage and soil carbon sequestration – What do we really know? Agriculture, Ecosystems and Environment, Amsterdam, v. 118, p. 1-5, 2007. https://doi.org/10.1016/j.agee.2006.05.014

BAI, X.; HUANG, Y.; REN, W.; COYNE, M.; JACINTHE, P.; TAO, B.; HUI, D.; YANG, J.; MATOCHA, C. Responses of soil carbon sequestration to climate‐smart agriculture practices: A meta‐analysis. Global Change Biology. v. 25, p. 2591-2606, 2019. https://doi.org/10.1111/gcb.14658

BERNOUX, M., CARVALHO, M. C. S.; VOLKOFF, B., CERRI, C.C. Brazil's soil carbon stocks. Soil Science Society of America Journal. v. 66, p. 888–896, 2002. https://doi.org/10.2136/sssaj2002.8880

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Plano setorial de mitigação e adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura: Plano ABC (Agricultura de Baixa Emissão de Carbono). Ministério da Agricultura, Pecuária e Abastecimento. Ministério do Desenvolvimento Agrário, coordenação da Casa Civil da Presidência da República – Brasília: MAPA/ACS, 2012. 173p.

BRAZ, S. P.; URQUIAGA, S.; ALVES, B. J. R.; JANTALIA, C. P.; GUIMARÃES, A. P. SANTOS, C. A.; SANTOS, S. C.; PINHEIRO, E. F. M.; BODDEY, R. M. Soil carbon stocks under productive and degraded Brachiaria pastures in the Brazilian Cerrado. Soil Science Society of America Journal. v. 77, p. 914-928, 2013. https://doi.org/10.2136/sssaj2012.0269

CAMPOS, L. P.; LEITE, L. F. C.; MACIEL, G. A.; BRASIL, E. L.; IWATA, B. F. Stocks and fractions of organic carbon in an Oxisol under different management systems. Pesquisa Agropecuária Brasileira. v. 48, n. 3, p. 304-312, 2013. https://doi.org/10.1590/S0100-204X2013000300009

CERRI, C. C.; GALDOS, M. V.; MAIA, S. M. F.; BERNOUX, M.; FEIGL, B. J.; POWLSON, D.; CERRI, C. E. P. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. European Journal of Soil Science. v. 62, p. 23-28, 2011. https://doi.org/10.1111/j.1365-2389.2010.01315.x

CONAB, C. N. A. Acompanhamento da safra brasileira de cana-de-açúcar Safra 2017/18. 2018.

DIGNAC, M. F.; DERRIEN, D.; BARRÉ, P.; BAROT, S.; CÉCILLON, L.; CHENU, C.; CHEVALLIER, T.; FRESCHET, G. T.; GARNIER, P.; GUENET, B.; HEDDE, M.; KLUMPP, K.; LASHERMES, G.; MARON, P. A.; NUNAN, N.; ROUMET, C.; DOELSCH, I. B. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development. v. 37, 2017. https://doi.org/10.1007/s13593-017-0421-2

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS AND INTERGOVERNMENTAL TECHNICAL PANEL ON SOILS. Status of the World’s Soil Resources (SWSR)—Main Report. 2015.

GOMES, L. C.; FARIA, M. R.; SOUZA, E.; VELOSO, G. V.; SCHAEFER, C. E. G.R.; FERNANDES FILHO, E. I. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma. v. 340, p. 337-350, 2019. https://doi.org/10.1016/j.geoderma.2019.01.007

IBGE. Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário, 2020a. Available: https://sidra.ibge.gov.br/tabela/6722. Accessed on: dez. 29, 2020.

IBGE. Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal. SIDRA. 2020b. Available: https://sidra.ibge.gov.br/tabela/5457. Accessed on: dez. 29, 2020.

IBGE. Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário. 2020c. Available: https://sidra.ibge.gov.br/tabela/784. Accessed on: dez. 29, 2020.

IBGE. Instituto Brasileiro de Geografia e Estatística. Cartas e mapas: bases cartográficas contínuas (1:250.000). 2017. Available: https://portaldemapas.ibge.gov.br/portal.php#mapas220344. Accessed on: dez. 20, 2020.

IPCC. Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories - Agriculture, Forestry and Other Land Use. In: EGGLESTON, S., BUENDIA, L., MIWA, K., NGARA, T., TANABE, K., (Ed.). Hayama: Intergovernmental Panel on Climate Change/IGES, 2006. v.4.

LAL, R. Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. BioScience. v. 60, p. 708–721, 2010. https://doi.org/10.1525/bio.2010.60.9.8

LAL, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, v. 24, p. 3285–3301, 2018. https://doi.org/10.1111/gcb.14054

LAPIG. Laboratório de Processamento de Imagens e Geoprocessamento. Atlas Digital das Pastagens Brasileiras. Available: https://pastagem.org/atlas/map. Accessed on: sep. 19, 2020.

LORENZ, K.; LAL, R. Soil organic carbon — an appropriate indicator to monitor trends of land and soil degradation within the SDG Framework? Dessau‐Roβlau, Germany: Umweltbundesamt. p. 52, 2016.

MACEDO, M. C. M.; ARAÚJO, A. R. Sistemas de integração lavoura-pecuária: alternativas para recuperação de pastagens degradadas. In: BUNGENSTAB, D. J. (Ed.). Sistemas de integração lavoura-pecuária-floresta: a produção sustentável. 2ed. Brasília, DF: Embrapa, p.27-48, 2012.

MAIA, S. M. F.; XAVIER, F. A. S.; OLIVEIRA, T. S.; MENDONÇA, E. S.; ARAÚJO FILHO, J. A. Organic carbono pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agroforestry Systems. v. 71, p. 127-138, 2007. https://doi.org/10.1007/s10457-007-9063-8

MAIA, S.M.F.; OGLE, S.M.; CERRI, C.E.P.; CERRI, C.C. Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma. v. 149, p. 84-91, 2009. https://doi.org/10.1016/j.geoderma.2008.11.023

MAIA, S. M. F.; OTUTUMI, A. T.; MENDONÇA, E. S.; NEVES, J. C. L.; OLIVEIRA, T. S. Combined effect of intercropping and minimum tillage on soil carbon sequestration and organic matter pools in the semiarid region of Brazil. Soil Research. v. 57, p. 266-275, 2019. https://doi.org/10.1071/SR17336

MAPBIOMAS. As transformações do território brasileiro nos últimos 36 anos – coleção 6. 2021, p. 8.

MCTI. Ministério da Ciência, Tecnologia e Inovação. Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa. Relatório de Referência – Setor Uso da Terra, Mudança do Uso da Terra e Florestas. Brasília, 2015. 343 p.

MCTI. Ministério da Ciência, Tecnologia e Inovações. Quarta Comunicação Nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima - Volume IV. Relatório de Referência: Setor uso da terra, mudança do uso da terra e floresta. Ministério da Ciência, Tecnologia e Inovação. Brasília: Ministério da Ciência, Tecnologia e Inovação, 2020.

MEDEIROS, A. S.; MAIA, S. M. F.; SANTOS, T. C.; GOMES, T. C. A. Soil carbon losses in conventional farming systems due to land-use change in the Brazilian semi-arid region. Agriculture, Ecosystems and Environment. v. 287, 2020. https://doi.org/10.1016/j.agee.2019.106690

MEDEIROS, A. S.; MAIA, S. M. F.; SANTOS, T. C.; GOMES, T. C. A. Losses and gains of soil organic carbon in grasslands in the Brazilian semi-arid region. Scientia Agricola. v. 78, n. 3, 2021. https://doi.org/10.1590/1678-992x-2019-0076

MELLO, F. F. F.; CERRI, C. E. P.; DAVIES, C. A.; HOLBROOK, N. M.; PAUSTIAN, K.; MAIA, S. M. F.; GALDOS, M. V.; BERNOUX, M.; CERRI, C. C. Payback time for soil carbon and sugar-cane ethanol. Nature Climate Change. 4, p. 605-609, 2014. https://doi.org/10.1038/nclimate2239

MINASNY, B.; MALONE, B. P.; MCBRATNEY, A. B.; ANGERS, D. A.; ARROUAYS, D.; CHAMBERS, A.; CHAPLOT, V.; CHEN, Z. S.; CHENG, K.; DAS, B. S.; FIELD, D. J.; GIMONA, A.; HEDLEY, C. B.; HONG, S. Y.; MANDAL, B.; MARCHANT, B. P.; MARTIN, M.; MCCONKEY, B. G.; MULDER, V. L.; O’ROURKE, S.; FORGES, A. C. R.; ODEH, I.; PADARIAN, J.; PAUSTIAN, K.; PAN, G.; POGGIO, L.; SAVIN, I.; STOLBOVOY, V.; STOCKMANN, U.; SULAEMAN, Y.; TSUI, C. C.; VÅGEN, T. G.; WESEMAEL, B. V.; WINOWIECKI, L. Soil carbon 4 per mile. Geoderma. v. 292, p. 59-86, 2017. https://doi.org/10.1016/j.geoderma.2017.01.002

MMA. Ministério do Meio Ambiente. Biomas do Brasil (1:5.000.000). 2005. Available: http://mapas.mma.gov.br/i3geo/mma/openlayers.htm. Accessed on: dez. 20, 2020.

NASCIMENTO, D. T. F.; NOVAIS, G. T. Clima do Cerrado: dinâmica atmosférica e características, variabilidades e tipologias climáticas. Élisée Revista de Geografia, v. 9, e922021, 2020.

OGLE, S. M.; CONANT, R. T.; PAUSTIAN, K. Deriving grassland management factors for a carbon accounting method developed by the Intergovernmental Panel on Climate Change. Environmental Management. v. 33, p. 474-484, 2004. https://doi.org/10.1007/s00267-003-9105-6

OGLE, S. M.; ALSAKER, C.; BALDOCK, J.; BERNOUX, M.; BREIDT, F. J.; MCCONKEY, B.; REGINA, K.; VAZQUEZ-AMABILE, G. G. Climate and soil characteristics determine where no-till management can store carbono in soils and mitigate greenhouse gas emissions. Scientific Reports. v. 9, 2019. https://doi.org/10.1038/s41598-019-47861-7

OLIVEIRA, S. P.; LACERDA, N. B.; BLUM, S. C.; ESCOBAR, M. E. O.; OLIVEIRA, T. S. Organic carbon and nitrogen stocks in soils of northeastern Brazil converted to irrigated agriculture. Land Degradation & Development. v. 26, p. 9-21, 2015. https://doi.org/10.1002/ldr.2264

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. Available: https://www.R-project.org/. Accessed on: feb. 01, 2021.

ROSSETTI, K. V.; CENTURION, J. F. Estoque de carbono e atributos físicos de um Latossolo em cronossequência sob diferentes manejos. Revista Brasileira de Engenharia Agrícola e Ambiental. v. 19, n. 3, p. 252-258, 2015. https://doi.org/10.1590/1807-1929/agriambi.v19n3p252-258

RUMPEL, C.; AMIRASLANI, F.; KOUTIKA, L. S.; SMITH, P.; WHITEHEAD, D.; WOLLENBERG, E. Put more carbon in soils to meet Paris climate pledges. Nature, 564, 32-24. 2018. https://doi.org/10.1038/d41586-018-07587-4

SAMPAIO, E. V. S. B.; COSTA, T. L. Estoques e fluxos de carbono no semiárido Nordestino: estimativas preliminares. Revista Brasileira de Geografia Física. v. 6, p. 1275-1291, 2011. https://doi.org/10.26848/rbgf.v4i6.232783

SANTOS, C. A.; REZENDE, C. P.; PINHEIRO, E. F. M.; PEREIRA, J. M.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R. M. Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic Forest region of Brazil. Geoderma. v. 337, p. 394-401, 2019. https://doi.org/10.1016/j.geoderma.2018.09.045

SEVERIANO, R. M.; PIERANGELI, M. A. P.; SANTOS, N. S.; XAVIER, V. Soil organic carbon in no-tillage systems of diferente ages in Southwest Mato Grosso, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental. v. 25, n. 4, p. 250-255, 2021. https://doi.org/10.1590/1807-1929/agriambi.v25n4p250-255

SIGNOR, D.; ZANI, C. F.; PALADINI, A. A.; DEON, M. D.; CERRI, C. E. P. Estoques de carbono e qualidade da matéria orgânica do solo em áreas cultivadas com cana-de-açúcar. Revista Brasileira de Ciências do Solo. v. 38, p. 1402-1410, 2014. https://doi.org/10.1590/S0100-06832014000500005

TAUTGES, N. E.; CHIARTAS, J. L.; GAUDIN, A. C. M.; O’GEEN, A. T.; HERRERA, I.; SCOW, K. M. Deep soil inventories revel that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Global Change Biology. v. 25, p. 3753-3766, 2019. https://doi.org/10.1111/gcb.14762

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

URQUIAGA, S.; ALVES, B.J.R.; JANTALIA, C.P.; BODDEY, R.M. Variations in Soil Carbon Stocks and Greenhouse Gas Emissions in Tropical and Subtropical Regions of Brazil: A Critical Analysis. Informações Agronômicas. v. 130, p. 12-21, 2010.

WANG, H.; WANG, S.; YU, Q.; ZHANG, Y.; WANG, R.; LI, J.; WANG, X. No tillage increases soil organic carbono storage and decreases carbono dioxide emission in the crop residue-returned farming system. Journal of Environmental Management. v. 261, 2020. https://doi.org/10.1016/j.jenvman.2020.110261

ZOMER, R. J.; BOSSIO, D. A.; SOMMER, R.; VERCHOT, L. V. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports. v. 7, 2017. https://doi.org/10.1038/s41598-017-15794-8

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Saniel Carlos dos Santos, Higor Costa de Brito, Iana Alexandra Alves Rufino, Stoécio Malta Ferreira Maia

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...