Fire in Savannas and its Impact on Avifauna: Considerations for a Better Environmental Conservation
PDF-pt (Português (Brasil))
PDF-en

Keywords

Fire ecology
Biogeography
Environmental policies

How to Cite

NUNES, B. B. da S. Fire in Savannas and its Impact on Avifauna: Considerations for a Better Environmental Conservation. Sociedade & Natureza, [S. l.], v. 35, n. 1, 2023. DOI: 10.14393/SN-v35-2023-68045. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/68045. Acesso em: 26 dec. 2024.

Abstract

Savannas are a pyrophytic biome, a biodiversity hotspot, and have global importance, occupying 20% of the Earth's surface. It is a biome that requires burning to maintain its biodiversity and pyrodiversity. It has suffered from altered fire regimes due to the direct and indirect action of factors such as deforestation, agriculture, cattle ranching, and climate change, resulting in habitat loss, degradation, and fragmentation. This fact can impact the avifauna, changing population dynamics and distribution in the landscape. Thus, through a literature search, this study evaluated the influences of fire on avifauna populations in savannas. It was found that fire impacts avifauna directly or indirectly and acts positively or negatively, according to the niche of the species evaluated and its intrinsic characteristics. The observed effect will depend on the fire detection ability, locomotion capacity, species, habit, functional guild, demographic parameters, resource availability, post-disturbance successional evolution, dispersal ability, and the geographic scale of the area affected by the fire. The main impacts observed for this clade are indirect effects, and its most negatively impacted populations are the ratites and those with poor locomotion ability. Despite the many gaps in knowledge about the impact of fire on the population parameters of avifauna, studies that focus on community dynamics indicate that, in general, there are few changes in richness and abundance indices. Thus, a greater understanding of the consequences of fire on birds is necessary to support better the actions of the Integrated Fire Management Program and its expansion throughout the Brazilian territory in search of quality, dynamic, and integrated environmental management.

https://doi.org/10.14393/SN-v35-2023-68045
PDF-pt (Português (Brasil))
PDF-en

References

ALVARADO, S.T. et al. Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: Tracking long-term fire regimes using remote sensing. Ecol. Indic., v.78, p.270-281, 2017. https://doi.org/10.1016/j.ecolind.2017.02.037

ANTUNES, A.Z. Alterações na composição da comunidade de aves ao longo do tempo em um fragmento florestal no sudeste do Brasil. Ararajuba, v.13, n.1, p.47-61, 2005.

ARCHIBALD, S. et al. Defining pyromes and global syndromes of fire regimes. PNAS, v.110, p.6442-6447, 2013. https://doi.org/10.1073/pnas.1211466110

BAESSE, C.Q. Aves como bioindicadoras da qualidade ambiental em fragmentos florestais do Cerrado. Dissertação (Mestrado em Ecologia e Conservação de Recursos Naturais) – Uberlândia: UFU. 2015.

BALM, P.H.M. Stress physiology in animals. Sheffield: Sheffield Academic Press, 1999.

BANKS, S.C. et al. Starting points for small mammal population recovery after wildfire: recolonisation or residual populations? Oikos, v.120, p.26–37, 2011. https://doi.org/10.1111/j.1600-0706.2010.18765.x

BOND, W.J.; KEELEY, J.E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. TREE, v.20, n.7, p.387-394, 2005. https://doi.org/10.1016/j.tree.2005.04.025

BOSCOLO, D.; METZGER, J.P. Isolation determines patterns of species presence in highly fragmented landscapes. Ecography, v.34, p.1018-1029, 2011. https://doi.org/10.1111/j.1600-0587.2011.06763.x

BOWMAN, D.M.J.S. et al. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Phil. Trans. R. Soc. B, v.371, n.20150169, 2016. https://doi.org/10.1098/rstb.2015.0169

BROOKER, M.J. Fire and birds in Western Australian heathland. Emu, v.98, p.276–287, 1998. https://doi.org/10.1071/MU98039

BROWN, S. et al. Fire is a key element in the landscape-scale habitat requirements and global population status of a threatened bird: The Mallee Emu-wren (Stipiturus mallee). Biol. Conserv., v.142, p.432–445, 2009. https://doi.org/10.1016/j.biocon.2008.11.005

BROWN, S.M. et al. Limited population structure, genetic drift and bottlenecks characterise an endangered bird species in a dynamic, fire-prone ecosystem. PLoS One, v.8, n.4, e59732, 2013. https://doi.org/10.1371/journal.pone.0059732

CHARLESWORTH, B.; CHARLESWORTH, D. The genetic basis of inbreeding depression. Genet. Res., v.74, p.329–340, 1999. https://doi.org/10.1017/S0016672399004152

CHARNOV, E.L. et al. Ecological implications of resource depression. Am. Nat., v.110, p.247–259, 1976. https://doi.org/10.1086/283062

COLLINSON, A.S. Introduction to world vegetation. 2 ed. London: Unwin Hyman Ltd, 1988. https://doi.org/10.1007/978-94-015-3935-7_15

COUTINHO, L.M. O conceito de cerrado. Rev. Bras. Bot., v.1, p.17-23, 1978.

COUTINHO, L.M. Aspectos ecológicos do fogo no cerrado. III – a precipitação atmosférica de nutrientes minerais. Rev. Bras. Bot., v. 2, p.29-101, 1979.

COUTINHO, L.M. O cerrado e a ecologia do fogo. Ciência Hoje, v. 12, n. 68, p. 22-30, 1990.

DAVIS, M.A. et al. Restoring Savanna Using Fire: Impact on the Breeding Bird Community. Restor. Ecol., v.8, n.1, p.30–40, 2000. https://doi.org/10.1046/j.1526-100x.2000.80005.x

DRISCOLL, D.A. et al. Fire management for biodiversity conservation: key research questions and our capacity to answer them. Biol. Conserv., v.143, p.1928–1939, 2010. https://doi.org/10.1016/j.biocon.2010.05.026

DUBLIN, H.T. et al. Elephants and fire as causes of multiple states in Serengeti-Mara woodlands. J. Animal Ecol., v.59, p. 1147-1164, 1990. https://doi.org/10.2307/5037

DURIGAN, G. et al. No net loss of species diversity after prescribed fires in the brazilian savanna. Front. For. Glob. Change, v.3, art.13, 2020. https://doi.org/10.3389/ffgc.2020.00013

DUTRA E SILVA, S.; BARBOSA, A.S. Paisagens e fronteiras do Cerrado: ciência, biodiversidade e expansão agrícola nos chapadões centrais do Brasil. Estudos Ibero-Americanos, v.46, n.1, e34028, 2020. https://doi.org/10.15448/1980-864X.2020.1.34028

FAHRIG, L.; MERRIAM, G. Conservation of fragmented populations. Conserv. Biol., v.8, p.50-59, 1994. https://doi.org/10.1046/j.1523-1739.1994.08010050.x

FIDELIS, A. et al. The year 2017: Megafires and management in the Cerrado. Fire, v.1, n.49, 2018. https://doi.org/10.3390/fire1030049

FIDELIS, A.; PIVELLO, V. R. Deve-se usar o fogo como instrumento de manejo no Cerrado e Campos Sulinos? Biodivers. Bras., ano I, n. 2, p.12-25, 2011. Disponível em: https://revistaeletronica.icmbio.gov.br/BioBR/article/view/102/103>. Acesso: 01 out., 2019.

FRANCO, A.C. et al. Cerrado vegetation and global change: the role of functional types, resource availability and disturbance in regulating plant community responses to rising CO2 levels and climate warming. Teor. Exp. Plant Physiol., v.26, p.19-38, 2014. https://doi.org/10.1007/s40626-014-0002-6

FRIZZO, T.L. et al. Uma revisão dos efeitos do fogo sobre a fauna de formações savânicas do Brasil. Oecol. Aust., v.15, p.365–379, 2011. https://doi.org/10.4257/oeco.2011.1502.13

FRYXELL, J.M. et al. Multiple movement modes by large herbivores at multiple spatiotemporal scales. PNAS, v.105, p.19114–19119, 2008. https://doi.org/10.1073/pnas.0801737105

GANEY, J.L., et al. Effects of fire on birds in Madrean forests and woodlands. In: FFOLLIOTT, P.F. et al. Effects of fire on Madrean Province Ecosystems: a symposium proceedings. Colorado: U.S. Forest Service, 1996. p.146-154.

GORGONE-BARBOSA, E. et al. How can an invasive grass affect fire behavior in a tropical savanna? A community and individual plant level approach. Biol. Invasions, v.17, p.423–431, 2015. https://doi.org/10.1007/s10530-014-0740-z

HARRISON, S.; TAYLOR, A.D. Empirical evidence for metapopulation dynamics. In: HANSKI, I.; GILIPIN, M.E. Metapopulation Biology, Ecology, Genetics and Evolution. Sydney: Academic Press, 1997. p. 27–42. https://doi.org/10.1016/B978-012323445-2/50004-3

HANSBAUER, M. et al. Comparative range use by three Atlantic Forest understorey bird species in relation to forest fragmentation. J. Trop. Ecol., v. 24, p. 291-299, 2008. https://doi.org/10.1017/S0266467408005002

HELLER, H.C. Sleep, hypometabolism, and torpor in birds. In: BECH, C.; REINERTSEN, R.E. Physiology of cold adaptation in birds. Boston: Springer, 1988. v. 173. (NATO ASI Series). p. 231 – 245. https://doi.org/10.1007/978-1-4757-0031-2_25

HENRIQUES, R. et al. Changes in small mammal populations after fire in a patch of unburned cerrado in Central Brazil. Mammalia, v.64, p.173–185, 2000. https://doi.org/10.1515/mamm.2000.64.2.173

HIGGINS, P.J. et al. Handbook of Australian, New Zealand and Antarctic birds. Melbourne: Oxford University Press, 2001. v.5.

HILTON-TAYLOR, C. IUCN Red List of Threatened Species. Cambridge: IUCN, 2000.

HOFFMANN, W.A. et al. Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology, v.90, p.1326-1337, 2009. https://doi.org/10.1890/08-0741.1

IBARRA, J.T. Seasonal dynamics of avian guilds inside and outside core protected areas in an Andean Biosphere Reserve of southern Chile. Bird Study, v.64, n.3, p.410-420, 2017. https://doi.org/10.1080/00063657.2017.1368447

JACKSON, L.J. Macrophyte-dominated and turbid states of shallow lakes: evidence from Alberta Lakes. Ecossystem v.6, p.213-223, 2003. https://doi.org/10.1007/s10021-002-0001-3

JARDINE, E.C. et al. The global distribution of grass functional traits within grassy biomes. J. Biogeogr., v.47, p.553–565, 2020. https://doi.org/10.1111/jbi.13764

JOLLY, W.M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun., v.6, n.7537, 2015. https://doi.org/10.1038/ncomms8537

KRAMER, A.M. et al. The evidence for Allee effects. Popul. Ecol., v.51, p.341–354, 2009. https://doi.org/10.1007/s10144-009-0152-6

LAMBECK, R.J. Focal species: a multi-species umbrella for nature conservation. Conserv. Biol., v.11, p.849-856, 1997. https://doi.org/10.1046/j.1523-1739.1997.96319.x

LYNCH, J.F.; WHIGHAM, D.F. The role of habitat disturbance in the ecology of overwintering migratory birds in the Yucatan Peninsula. In: SADER, S.; WILSON, M.; ESTRADA, A. Conservation of neotropical migratory birds in Mexico. Orono: Maine Agricultural and Forest Experiment Station, 1995. p. 199-214.

MARMORI, M. O fogo na justa medida. Ciência Hoje, v.12, n.68, p. 68, 1990.

MCGRANAHAN, D.A. et al. An invasive grass increases live fuel proportion and reduces fire spread in a simulated grassland. Ecosystems, v.16, p.158–169, 2013. https://doi.org/10.1007/s10021-012-9605-4

MITCHELL, W.A.; LIMA, S.L. Predator-prey shell games: large-scale movement and its implications for decision-making by prey. Oikos, v.99, p.249–259, 2002. https://doi.org/10.1034/j.1600-0706.2002.990205.x

MOORMAN, C. E. et al. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps. Wilson J. Ornith., v. 124, p. 31-39, 2012. https://doi.org/10.1676/11-020.1

MOORTER, B.V. et al. Understanding scales of movement: animals ride waves and ripples of environmental change. J. Anim. Ecol., v.82, p.770–780, 2013. https://doi.org/10.1111/1365-2656.12045

MOREIRA, A.G. Effects of fire protection on savanna structure in Central Brazil. J. Biogeogr., v.27, p.1021-1029, 2000. https://doi.org/10.1046/j.1365-2699.2000.00422.x

MURPHY, E.C.; LEHNHAUSEN, W.A. Density and foraging ecology of woodpeckers following a stand-replacement fire. J. Wildl. Manage., v.62, p.1359–1372, 1998. https://doi.org/10.2307/3802002

NATHAN, R. et al. A movement ecology paradigm for unifying organismal movement research. PNAS, v.105, p.19052–19059, 2008. https://doi.org/10.1073/pnas.0800375105

NIMMO, D.G. et al. Welcome to the Pyrocene: animal survival in the age of megafire. Glob Change Biol., v.00, p.1–10, 2021. https://doi.org/10.32942/OSF.IO/46ZGD

NORRIS, K. Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm. J. Appl. Ecol., v.41, p.413–426, 2004. https://doi.org/10.1111/j.0021-8901.2004.00910.x

NOVOA, F.J. et al. Fire regimes shape biodiversity: responses of avian guilds to burned forests in Andean temperate ecosystems of southern Chile. Avian Conserv. Ecol., v.16, n.2, art.22, 2021. https://doi.org/10.5751/ACE-01999-160222

OLIVEIRA, R.D.A. Efeitos da fragmentação de habitat nas comunidades de aves do Cerrado. Dissertação (Mestrado em Ecologia) – Brasília: UnB. 2013.

PIVELLO, V.R. The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire Ecol., v.7, p.24-39, 2011. https://doi.org/10.4996/fireecology.0701024

PORTER, A.H. Refugees from lost habitat and reorganization of genetic population structure. Conserv. Biol., v.13, p.850–859, 1999. https://doi.org/10.1046/j.1523-1739.1999.98308.x

PULLIAM, H.R.; DANIELSON, B.J. Sources, sinks and habitat selection: a landscape perspective on population dynamics. Am. Nat., v.137, p.S50–S66, 1991. https://doi.org/10.1086/285139

RAMOS-NETO, M.B.; PIVELLO, V.R. Lightning fires in a brazilian savanna national park: rethinking management strategies. Environ. Manage, v.26, n.6, p.675-684, 2000. https://doi.org/10.1007/s002670010124

RIDLEY, A.R. et al. The cost of being alone: the fate of floaters in a population of cooperatively breeding pied babblers Turdoides bicolor. J. Avian Biol., v.39, p.389–392, 2008. https://doi.org/10.1111/j.0908-8857.2008.04479.x

ROLSTAD, J. Consequences of forest fragmentation for the dynamics of bird populations: conceptual issues and the evidence. Biol. J. Linn. Soc. Lond., v.42, p.149-163, 1991. https://doi.org/10.1016/B978-0-12-284120-0.50013-9

SANDERFOOT, O.V. et al. A review of the effects of wildfire smoke on the health and behavior of wildlife. Environ. Res. Lett., v.16, 123003, 2021. https://doi.org/10.1088/1748-9326/ac30f6

SCHMIDT, I.B.; ELOY, L. Fire regime in the brazilian savanna: recent changes, policy and management. Flora, v.268, p.1-16, 2020. https://doi.org/10.1016/j.flora.2020.151613

SCHMIDT, I.B. et al. Fire management in the brazilian savanna: first steps and the way forward. J. Appl. Ecol., v.55, p.2094–2101, 2018. https://doi.org/10.1111/1365-2664.13118

SCHOLES, R.J.; HALL, D.O. The carbon budget of tropical savannas, woodlands and grasslands. SCOPE, v.56, p.69-100, 1996.

SETTERFIELD, S.A. et al. Turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern australian savannas. Divers. Distrib., v.16, p.854–886, 2010. https://doi.org/10.1111/j.1472-4642.2010.00688.x

SIMON, M.F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS, v.106, p.20359-20364, 2009. https://doi.org/10.1073/pnas.0903410106

SIMPSON, K.J. et al. Savanna fire regimes depend on grass trait diversity. TREE, v.37, n.9, p.749-758, 2022. https://doi.org/10.1016/j.tree.2022.04.010

SIQUEIRA, M.N. et al. Geografia e ecologia da paisagem: pontos para discussão. Soc. Nat., v.25, n.3, p.557-566, 2013. https://doi.org/10.1590/S1982-45132013000300009

STEVENS, N. et al. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol., v.23, p.235–244, 2017. https://doi.org/10.1111/gcb.13409

TUBELIS, D.P.; DELITTI, W.B.C. Fire management and the nesting of Athene cunicularia (Aves, Strigidae) in grasslands in central cerrado, Brazil. Biota Neotrop., v.10, n.2, p.93-101, 2010. https://doi.org/10.1590/S1676-06032010000200012

TUBELIS, D.P. et al. Landscape supplementation in adjacent savannas and its implications for the design of corridors for forest birds in the central Cerrado, Brazil. Biol. Conserv., v.118, p.353-364, 2004. https://doi.org/10.1016/j.biocon.2003.09.014

WALTER, B.M.T.; RIBEIRO, J.F. Diversidade fitofisionômica e o papel do fogo no bioma Cerrado. In: MIRANDA, H.S. Efeitos do regime de fogo sobre a estrutura de comunidades de Cerrado: resultados do Projeto Fogo. Brasília: IBAMA, 2010. p. 59-76.

WALTER, B.M.T. et al. O conceito de savana e de seu componente Cerrado. In: SANO, S.M. et al. Cerrado: ecologia e flora. Brasília: IBAMA, 2008. v 1. p.19-45.

WALTERS, J.R. et al. Delayed dispersal and reproduction as a life-history tactic in cooperative breeders—fitness calculations from redcockaded woodpeckers. Am. Nat., v.139, p.623–643, 1992. https://doi.org/10.1086/285347

Este é um artigo de acesso aberto distribuído nos termos da Licença de Atribuição Creative Commons, que permite o uso irrestrito, distribuição e reprodução em qualquer meio, desde que o trabalho original seja devidamente citado.

WATSON, S.J. et al. The influence of unburnt patches and distance from refuges on post-fire bird communities. Anim. Conserv., v.15, p.499–507, 2012. https://doi.org/10.1111/j.1469-1795.2012.00542.x

WITH, K.A.; KING, A.W. Analysis of landscape sources and sinks: the effect of spatial pattern on avian demography. Biol. Conserv., v.100, p.75–88, 2001. https://doi.org/10.1016/S0006-3207(00)00209-3

WUNDERLE, J.M. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For. Ecol. Manag., v.99, n.1-2, p.223-235, 1997. https://doi.org/10.1016/S0378-1127(97)00208-9

YOUNG, A.J.; MONFORT, S.L. Stress and the costs of extra-territorial movement in a social carnivore. Biol. Lett., v.5, p.439–441, 2009. https://doi.org/10.1098/rsbl.2009.0032

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Bárbara Beatriz da Silva Nunes

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...