Use of Spatial Visualization for Pattern Discovery in Evapotranspiration Estimation

Conteúdo do artigo principal

Fernando Xavier
http://orcid.org/0000-0001-5797-7339
Maria Luíza Correa Brochado

Resumo

In Water Resources area, data are obtained from various sources, such as measuring instruments and satellites. Often such data may contain patterns that are not easily identified, either because of the large volume of data sets or because the analysis requires the use of several data dimensions. In this way, this study proposes the application of machine learning resources and spatial visualization to identify patterns in the estimation of an important component of the hydrological cycle: the evapotranspiration. This work is expected to contribute to an approach to estimate evapotranspiration, using spatial resources for pattern identification and model generation.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
XAVIER, F.; BROCHADO, M. L. C. Use of Spatial Visualization for Pattern Discovery in Evapotranspiration Estimation. Revista Brasileira de Cartografia, [S. l.], v. 70, n. 5, p. 1758–1778, 2018. DOI: 10.14393/rbcv70n5-45168. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/45168. Acesso em: 5 jan. 2025.
Seção
Seção Especial "Brazilian Symposium on GeoInformatics - GEOINFO 2023"
Biografia do Autor

Fernando Xavier, Universidade de São Paulo

Graduate Program in Electrical Engineering - Polytechnic School

Maria Luíza Correa Brochado, University of Brasilia

Graduate Program in Geography - Geography Department

Referências

AGARWAL, P.; BISWAS, S. S. Big Data in Climate Change. Global Journal for Research Analysis, vol. 6, n. 7, 2018, pp 50-51.

AL-JARRAH, O. Y.; YOO, P. D.; MUHAIDAT, S.; KARAGIANNIDIS, G. K.; TAHA, K. Efficient machine learning for big data: A review. Big Data Research, vol. 2, n. 3, 2015, pp. 87-93.

CAMARGO, A. D.; MARIN, F. R.; SENTELHAS, P. C.; & PICINI, A. G. (1999). Ajuste da equação de Thornthwaite para estimar a evapotranspiração potencial em climas áridos e superúmidos, com base na amplitude térmica diária. Revista Brasileira de Agrometeorologia, vol. 7, n. 2, 1999, pp. 251-257.

DEO, R. C.;

FAO (2017). Introduction to evapotranspiration. Site < http://www.fao.org/docrep/x0490e/x0490e04.htm>, accessed in July 2017.

FAYYAD, U.; PIATETSKY-SHAPIRO, G; SMYTH, P. From data mining to knowledge discovery in databases. AI magazine, vol. 17, n. 3, 1996, pp. 37-54.

FENG, Y.; PENG, Y.; CUI, N.; GONG, D.; ZHANG, K. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, vol. 136, 2017, pp. 71-78.

FRANK, E.; HALL; M.; WITTEN, I. H. The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, vol. 11, n. 1, 2009, pp. 10-18.

MAJIDI, M.; ALIZADEH, A.; VAZIFEDOUST, M.; FARID, A.; AHMADI, T. Analysis of the effect of missing weather data on estimating daily reference evapotranspiration under different climatic conditions. Water Resources Management, vol. 29, n. 7, 2015, pp. 2107-2124.

MMA, Ministry of the Environment. Site <http://www.mma.gov.br/biomas>, accessed in June 2018.

PFEIFFER, D. U.; STEVENS, K. B. Spatial and temporal epidemiological analysis in the Big Data era. Preventive veterinary medicine, vol. 122, n. 1-2, 2015, pp. 213-220.

QGIS, Geographic Information System. Site <http://qgis.osgeo.org>, accessed in July 2017.

RHEE, J; IM, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agricultural and Forest Meteorology, vol. 237, 2017, pp. 105-122.

VAN DER AALST, Wil MP. Data scientist: The engineer of the future. Enterprise interoperability VI. Springer, Cham, 2014. p. 13-26.

XAVIER, F.; BROCHADO, M. L. C. Use of Spatial Visualization for Pattern Discovery in Evapotranspiration Estimation. Proceedings of the XVIII Brazilian Symposium on GeoInformatics, Salvador, 2017. pp. 346-356.

XAVIER, F.; TANAKA, A. K.; REVOREDO, K. C. KDD application on Meteorological Data for Identification of Regional Patterns in Estimation of Evapotranspiration. Proceedings of the 30th Brazilian Symposium on Databases, Petrópolis, 2015. pp. 27-32.

XAVIER, F. Application of Data Science Techniques in Evapotranspiration Estimation. Master

XINGJIAN, S. H. I.; CHEN, Z.; WANG, H.; YEUNG, D. Y.; WONG, W. K.; WOO, W. C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems. 2015, pp. 802-810.

WARD, M. O.; GRINSTEIN, G.; KEIM, D. Interactive data visualization: foundations, techniques, and applications. AK Peters/CRC Press, 2015. 578p.

WMO, Guide to Meteorological Instruments and Methods of Observation, 6th ed., WMO Rep. 8, World Meteorological Organization, Geneva, Switzerland, 1996.