Abstract
The social and environmental challenges are directly related to the
existing population concentration in urban environments, which
contribute to more than 75% of the world’s Gross Domestic Product
(GDP). Thus, it is essential to detect the dynamics of Land Use and
Land Cover (LULC) aiming to support public policies elaboration and
implementation. SAR systems, especially the interferometry
techniques, have been shown great results in face of this challenge,
since they do not have direct influence from the atmosphere. Limited
studies were conducted using interferometric coherence from the Sentinel-1 satellite in an urban environment. In this sense, the
objective of this study was to classify the LULC of part of the Federal
District, Brazil based on different dimensions considering the measures
of intensity and interferometric coherence for the year 2018. The results
measured from the Kappa and F1 metrics indicate that the insertion of
a time series of interferometric coherencies improves the performance of
the classification, from 0.50 to 0.75 (Kappa) and from 0.54to 0.79 (F1), a
fact that was evident in the improved performance of the thematic
classes related to vegetation cover. Furthermore, it is also found that
the identification of urban objects is best represented by the use of only
the intensities (VV and VH) in the classification process.
References
AUBLANC, J.; MOREAU, T.; THIBAUT, P.; BOY, F.; RÉMY, F.; PICOT, N. Evaluation of SAR altimetry over the Antarctic ice sheet from CryoSat-2 acquisitions. Advances in Space Research, v. 62, n. 6, p. 1307-1323, 2018. https://doi.org/10.1016/j.asr.2018.06.043
BELGIU, M.; DRAGUT, L. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, v. 114, p. 24-31, 2016.
https://doi.org/10.1016/j.isprsjprs.2016.01.011
BITENCOURT, M. D. Classificação espectro-temporal da cultura de grãos em imagens Sentinel (SAR) utilizando Machine Learning em Luís Eduardo Magalhães, Brasil. (Dissertação de Mestrado), Curso de Pós-graduação em Geografia, Universidade de Brasília, 2020, 39f. https://repositorio.unb.br/
BRASIL. Governo de Distrito Federal – GDF. Zoneamento Ecológico-Econômico do Distrito Federal (ZEE/DF). Brasília, 2018. http://www.zee.df.gov.br/
BRASIL. Instituto Brasileiro de Geografia e Estatística – IBGE. Resolução n01/2015 que trata da transformação entre os referenciais geodésicos no Brasil. Rio de Janeiro, 2015.
ftp://geoftp.ibge.gov.br/metodos_e_outros_documentos_de_referencia/normas/rpr_01_2015_sirgas2000.pdf
BREIMAN, L. Random Forests. Machine Learning, v. 45, n. 1, p. 5-32, 2001.
https://doi.org/10.1023/A:1010933404324
CAO, R.; TU, W.; YANG, C.; LI, Q.; LIU, J.; ZHU, J.; ZHANG, Q.; LI, Q.; QIU, G. Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS Journal of Photogrammetry and Remote Sensing, v. 163, p. 82-97, 2020.
https://doi.org/10.1016/j.isprsjprs.2020.02.014
CHATURVEDI, S. K.; BANERJEE, S.; LELE, S. An assessment of oil spill detection using Sentinel 1 SAR-C images. Journal of Ocean Engineering and Science, in press, 2019.
https://doi.org/10.1016/j.joes.2019.09.004
CIAMPALINI, A.; SOLARI, L.; GIANNECCHINI, R.; GALANTI, Y.; MORETTI, S. Evaluation of subsidence induced by long-lasting building load using InSAR technique and geotechnical data: The case study of a Freight Terminal (Tuscany, Italy). International Journal of Applied Earth Observation and Geoinformation, v. 82, 2019. https://doi.org/10.1016/j.jag.2019.101925
COSTA, D. H. Uso de séries temporais Sentinel 1 na identificação de culturas agrícolas utilizando modelos de Machine Learning. (Dissertação de Mestrado), Curso de Pós-graduação em Geografia, Universidade de Brasília, 2020, 51f. https://repositorio.unb.br/
DE ZAN, F.; GUARNIERI, A. M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Transactions on Geoscience and Remote Sensing, v. 44, n. 9, p. 2352-2360, 2006.
https://doi.org/10.1109/TGRS.2006.873853
DINIZ, J. M. F. S; GAMA, F. F. Utilização da coerência interferométrica SAR para mapeamento do uso e cobertura da terra na região da Amazônia. In: Simpósio Brasileiro de Sensoriamento Remoto, 2019, Santos/SP. Anais... São José dos Campos: INPE, 2019. Disponível em: https://proceedings.science/sbsr-2019/papers/utilizacao-da-coerencia-interferometrica-sar-para-mapeamento-do-uso-e-cobertura-da-terra-na-regiao-da-amazonia
FERREIRA, G. H. S. Identificação de áreas inundáveis na porção sul de Roraima com auxílio de imagens de radar. (Dissertação de Mestrado), Curso de Pós-graduação em Geografia, Universidade de Brasília, 2018, 75f. https://repositorio.unb.br/handle/10482/33928
GRIFFITHS, P.; HOSTERT, P.; GRUEBNER, O.; LINDEN, V. Mapping megacity growth with multi-sensor data. Remote Sensing of Environment, v. 114, n. 2, p. 426-439, 2010.
https://doi.org/10.1016/j.rse.2009.09.012
HU, L.; DAI, K.; XING, C.; LI, Z.; TOMÁS, R.; CLARK, B.; SHI, X.; CHEN, M.; ZHANG, R.; QIU, Q.; LU, Y. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel 1 InSAR observations. International Journal of Applied Earth Observation and Geoinformation, v. 82, 2019. https://doi.org/10.1016/j.jag.2019.05.019
KHALIL, R. Z.; HAQUE, S. Insar coherence-based land cover classification of Okara, Pakistan. The Egyptian Journal of Remote Sensing and Space Sciences. v. 21, p. S23-S28, 2018.
https://doi.org/10.1016/j.ejrs.2017.08.005
LAWRENCE, R. L.; MORAN, C. J. The AmericaView Classification Methods Accuracy Project: A Rigorous Approach for Model Selection. Remote Sensing of Environment, v. 170, p. 115-120, 2015. https://doi.org/10.1016/j.rse.2015.09.008
LI, M.; ZHANG, L.; DING, C.; LI, W.; LUO, H.; LIAO, M.; XU, Q. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event. Remote Sensing of Environment, v. 240, 2020.
https://doi.org/10.1016/j.rse.2020.111695
MARQUES, J. B.; CARVALHO JÚNIOR, O. A.; CAMPAGNOLI, F.; MESQUITA JÚNIOR, H. N.; GOMES, R. A. T.; GUIMARÃES, R. F. Classificação da cobertura da terra na região da ilha do Bananal usando imagens multitemporais PALSAR-2/ALOS-2. Revista Franco-Brasileira de Geografia (Confins), v. 39, 2019. https://doi.org/10.4000/confins.17506
MAXWELL, A. E.; WARNER, T. A.; FANG, F. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, v. 39, n. 9, p. 2784-2817, 2018. https://doi.org/10.1080/01431161.2018.1433343
MIGUEL, B. H.; SANO, E. E. Classificação do uso e cobertura da terra do Distrito Federal, Brasil a partir de dado de coerência interferométrica. Revista Brasileira de Geografia Física, v. 12, n. 2, p. 427-442, 2019. https://doi.org/10.26848/rbgf.v12.2.p427-442
MOHAMMADIMANESH, F.; SALEHI, B.; MAHDIANPARI, M.; BRISCO, B.; MOTAGH, M. Multi-temporal, multi-frequency, and multipolarization coherence and SAR backscatter analysis of wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, v. 142, p. 78-93, 2018.
https://doi.org/10.1016/j.isprsjprs.2018.05.009
OLESK, A.; PRAKS, J.; ANTROPOV, O.; ZALITE, K.; ARRUMAE, T.; VOORMANSIK, K. Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data. Remote Sensing, v. 8, n. 9, 2016. https://doi.org/10.3390/rs8090700
OLIVEIRA, P. D. S. Uso de aprendizagem de máquina e redes neurais convolucionais profundas para a classificação de áreas queimadas em imagens de alta resolução espacial. (Dissertação de Mestrado), Curso de Pós-graduação em Geografia, Universidade de Brasília, 2019, 34p. https://repositorio.unb.br
OZIGIS, M. S.; KADUK, J. D.; JARVIS, C. H.; BISPO, P. C.; BALZTER, H. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Environmental Pollution, v. 256, 2020.
https://doi.org/10.1016/j.envpol.2019.113360
PICHIERRI, M.; HAJNSEK, I.; ZWIEBACK, S.; RABUS, B. On the potential of Polarimetric SAR Interferometry to characterize the biomass, moisture and structure of agricultural crops at L-, C- and X-Bands. Remote Sensing of Environment, v. 204, p. 596-616, 2018.
https://doi.org/10.1016/j.rse.2017.09.039
PRINZIE, A; VAN DEN POEL, D. Random Forests for multiclass classification: Random MultiNomial Logit. Expert systems with Applications: An International Journal, v. 34, n. 3, p. 1721-1732, 2008. https://doi.org/10.1016/j.eswa.2007.01.029
RAJAH, P.; ODINDI, J.; MUTANGA, O. Feature level image fusion of optical imagery and Synthetic Aperture Radar (SAR) for invasive alien plant species detection and mapping. Remote Sensing Applications: Society and Environment, v. 10, p. 198-208, 2018.
https://doi.org/10.1016/j.rsase.2018.04.007
SALGADO, C. B. Emprego de séries temporais na Amazônia: análise de imagens MODIS e RADAR para mapeamento de uso e ocupação do solo no Estado do Acre. (Tese de Doutorado), Curso de Pós-graduação em Geografia, Universidade de Brasília, 2019, 113f.
https://repositorio.unb.br/handle/10482/35999
SALGADO, C. B.; CARVALHO JÚNIOR, O. A.; GOMES, R. A. T.; GUIMARÃES, R. F. Análise da interferência de nuvens na classificação de séries temporais MODIS-NDVI na região da Amazônia, município de Capixaba, Acre. Sociedade & Natureza, v. 31, p. 1-20, 2019.
https://doi.org/10.14393/SN-v31-2019-47062
SEKERTEKIN, A.; MARANGOZ, A. M.; ADBIKAN, S. ALOS-2 and Sentinel-1 SAR data sensitivity analysis to surface soil moisture over bare and vegetated agricultural fields. Computers and Electronics in Agriculture, v. 171, 2020. https://doi.org/10.1016/j.compag.2020.105303
SICA, F.; PULELLA, A.; NANNINI, M.; PINHEIRO, M.; RIZZOLI, P. Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-Series. Remote Sensing of Environment, v. 232, 2019. https://doi.org/10.1016/j.rse.2019.111277
WEGMULLER, U.; SANTORO, M.; WERNER, C.; CARTUS, O. On the estimation and interpretation of Sentinel 1 TOPS InSAR coherence. In: Proc. of FRINGE 2015 Workshop, Frascati, Italia, 23-27 março, ESA, 2015. http://proceedings.esa.int/files/89.pdf
WERNER, A.; STORIE, C. D.; STORIE, J. Evaluating SAR-Optical Image Fusions for Urban LULC Classification in Vancouver Canada. Canadian Journal of Remote Sensing, v. 40, n. 4, p. 278-290, 2014. https://doi.org/10.1080/07038992.2014.976700
WHITCOMB, J.; MOGHADDAM, M.; MCDONALD, K.; KELLNDORFER, J.; PODEST, E. Mapping vegetated wetlands of Alaska using L-band radar satellite imagery. Canadian Journal of Remote Sensing, v. 35, n. 1, p. 54-72, 2009.
https://doi.org/10.5589/m08-080
ZHANG, H.; LI, J.; WANG, T.; LIN, H.; ZHENG, Z.; LI, Y.; LU, Y. A manifold learning approach to urban land cover classification with optical and radar data. Landscape and Urban Planning, v. 172, p. 11-24, 2018. https://doi.org/10.1016/j.landurbplan.2017.12.009
ZHU, Z.; ZHOU, Y.; SETO, K. C.; STOKES, E. C.; DENG, C.; PICKETT, S. T. A.; TAUBENBOCK, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sensing of Environment, v. 228, p. 164-182, 2019. https://doi.org/10.1016/j.rse.2019.04.020
Authors hold the Copyright for articles published in this journal, and the journal holds the right for first publication. Because they appear in a public access journal, articles are licensed under Creative Commons Attribution (BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.