Chemical and Physical Characterization of Swift Guano in Quartzitic Karst Landscape in Brazil
PDF-en

Keywords

Caves
Geochemistry
Guano deposit
Siliciclastic rocks
Weathering

How to Cite

REIS, A. L. M.; CLEMENTE, N.; FARIA, A. L. L. de; BERNARDES, R. C.; COSTA, L. M. da. Chemical and Physical Characterization of Swift Guano in Quartzitic Karst Landscape in Brazil. Sociedade & Natureza, [S. l.], v. 36, n. 1, 2023. DOI: 10.14393/SN-v36-2024-70150. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/70150. Acesso em: 14 jun. 2024.

Abstract

The Private Reserve of Natural Patrimony (RPPN) of the Santuário of Caraça is found in a mountain region within the Quadrilátero Ferrífero geological province in the State of Minas Gerais. In this region, intense metamorphic processes shaped their siliciclastic rocks, enabling the formation of fractures and diaclasis, the favourite routes of weathering during the development of karst landscapes. The natural cavities thus formed, mainly in the RPPN sector called “Pico do Inficionado”, provide shelter for countless swifts of the species Streptoprocne zonaris and S. biscutata, responsible for the accumulation of guano on the floor. However, guano is a substance rich in nutrients, mainly phosphates and nitrates, and this is the main nutrient supply in permanently dry caves. This work studied the physical (density) and chemical (organic carbon, nitrogen, potassium, phosphorus, sodium, calcium, magnesium, aluminium and pH) characteristics of 21 guanos layers, correlating their contents with the depth of seven deposits and separating the results into factors. Considering that, knowing that the guano deposits contain crucial elements such as Ca, Mg, and especially P and N, which act as an energy source for many chemotrophic organisms, the subdivision of the studied elements allowed us to defer three factors: the first one features the concentrations of Al, P, K, Na and CO, the second one was determined for N, pH and density. Finally, the third factor was based on Ca and Mg. The quartzitic material influences the chemical and physical composition of the deepest guano. As the rock changes, elements like Al and K are released and enrich the deeper layers, as well as increasing density due to the presence of sand in the material.

https://doi.org/10.14393/SN-v36-2024-70150
PDF-en

References

ABREU, A.C.L. Plano de Manejo da RPPN “Santuário do Caraça” Minas Gerais. Relatório. Instituto Chico Mendes de Conservação da Biodiversidade, pp. 195, 2013.

ALKMIM, F.F.; MARSHAK. S. Transamazonian orogeny in the Southern Sao Francisco craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrifero. Precambrian Research, v. 90, pp. 29–58, 1998. https://doi.org/10.1016/S0301-9268(98)00032-1

ANDRADE, R. P. Geoquímica dos solos e das águas da Pennínsula da Fildes e Ilha Ardley-Antártica. 2011. Thesis (Master Degree in Soils and Plant Nutrition). Universidade Federal de Viçosa, Viçosa, 2012.

BAHIA, G. R.; FERREIRA. R. L. Influência das características físicoquímicas e da matéria orgânica de depósitos recentes de guano de morcego na riqueza e diversidade de invertebrados de uma caverna calcária. Revista Brasileira de Zoociências, v. 7, pp. 165-180, 2009.

BATAGLIA, O. C.; FURLANI, A. M. C.; TEIXEIRA, J. P. F.; FURLANI, P. R., J.; GALLO, R. Métodos de análise química de plantas. Instituto Agronômico de Campinas, pp. 31, Campinas. 1983.

BENITES, V. M.; SCHAEFER, C. E. R.; SIMAS, F. N. B.; H.G. SANTOS. Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Brazilian Journal of Botany, v. 30, pp. 569-577. 2007. https://doi.org/10.1590/S0100-84042007000400003

BERNARD, E.; BEZERRA, J. D. P.; SOUZA-MOTTA, C. M. Richness of Cladosporium in a tropical bat cave with the description of two new species. Mycological Progress, v. 21, pp. 345-357, 2022. https://doi.org/10.1007/s11557-021-01760-2

BERNATH, R. F.; KUNZ, T. H. Structure and dynamics of arthropod communities in bat guano deposits in buildings. Canadian Journal of Zoology, v. 59, pp. 260–270, 1981. https://doi.org/10.1139/z81-041

BIGARELLA, J. J. Estrutura e origem das paisagens tropicais e subtropicais. Florianópolis: Editora EDUFSC, pp. 1436, 2007.

ICMBIO/CECAV - Centro Nacional de Pesquisa E Conservação De Cavernas. Anuário estatístico do patrimônio espeleológico brasileiro 2020. Available: https://www.gov.br/icmbio/pt-br/assuntos/centros-de-pesquisa/cecav/images/stories/downloads/. Access on: jun. 23, 2023.

CLEMENTE, N. Geoambientes da Serra do Caraça e feições do cárste quartzítico. 2015. Thesis (Master Degree in Soils and Plant Nutrition). Universidade Federal de Viçosa, Viçosa, 2015.

CONCEIÇÃO, A. A.; PIRANI, J. R.; MEIRELLES, S. T. Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of Chapada Diamantina, Northeast Brazil. Revista Brasileira de Botânica. v. 30, pp. 641-656, 2007. https://doi.org/10.1590/S0100-84042007000400009

CULVER, D.C.; PIPAN, T. The biology of caves and other subterranean habitats. Oxford University Press, Oxford, pp. 291, 2019. https://doi.org/10.1093/oso/9780198820765.001.0001

DORR, J. V. N. Physiographic, stratigraphic, and structural development of the Quadrilatero Ferrifero, Minas Gerais, Brazil. US Government Printing Office, Washington pp. 117, 1969. https://doi.org/10.3133/pp641A

DUTRA, G. M.; RUBBIOLI, E. L.; HORTA, L. S. Gruta do Centenário, Pico do Inficionado (Serra da Caraça), MG: A maior e mais profunda caverna quartzítica do mundo. Sítios geológicos e paleontológicos do Brasil (SIGEP), v. 1, pp. 431-441, 2002.

FERREIRA, D.F. Estatística Multivariada. Lavras: Editora UFLA, pp. 675, 2011.

FERREIRA, R. L.; MARTINS, R. P. Diversity and Distribution of Spiders Associated with Bat Guano Piles in Morrinho Cave (Bahia State, Brazil). Diversity and Distributions, v. 4, pp. 235-241, 1998.

GIBERT, J.; DANIELOPOL, D.; STANFORD, J. A. Groundwater ecology. San Diego: Academic Press, pp.443, 1998.

GNASPINI P.; TRAJANO, E. Guano communities in tropical caves. Case study: Brazilian caves. In:

GNASPINI, P.; TRAJANO, E. Guano communities in tropical caves. Ecosystems of the World. In:

ICMBIO- Instituto Chico Mendes De Conservação da Biodiversidade). ICMBio/CECAV (Centro Nacional de Pesquisa e Conservação de Cavernas). Anuário estatístico do patrimônio espeleológico brasileiro. 2022. Available: https://www.gov.br/icmbio/pt-br/assuntos/centros-de-pesquisa/cecav/patrimonio-espeleologico-em-pauta-1/icmbio-cecav-publica-relatorio-anual-2022. Access on: 23 de junho de 2023.

IUSS WORKING GROUP WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, Rome, n. 106, 2015.

LEPSCH, I. F. 19 lições de Pedologia. São Paulo: Oficina textos, pp. 456, 2016.

MINGOTI, S. A. Análise de dados através de métodos de estatística multivariada: Uma abordagem aplicada. Belo Horizonte: Editora UFMG, pp. 295, 2007.

MUNSELL, A. H. Munsell soil color charts. Baltimore: Munsell Color Company, I.N.C., 2000.

PAULA, C. C. P.; BICHUETTE, M. E.; SELEGHIM, M. H. R. Nutrient availability in tropical caves influences the dynamics of microbial biomass. Microbiology Open, v. 9, pp. 1-13, 2020. https://doi.org/10.1002/mbo3.1044

PELLEGRINI, T. G.; FERREIRA, R. L. Structure and interactions in a cave guano–soil continuum community. European journal of Soil Biology, v. 57, pp. 19-26, 2013. https://doi.org/10.1016/j.ejsobi.2013.03.003

PELLEGRINI, T. G.; FERREIRA, R. L. Relações de presa-predador de uma comunidade de invertebrados associados a um grande depósito de guano. In: Anais 31º Congresso Brasileiro de Espeleologia. Ponta Grossa-PR, 21 a 24 de julho de 2011, pp. 421-426.

R CORE TEAM. The R project for statistical computing. R Foundation for Statistical Computing, 2020, Vienna, Austria. Available: http://www.R-project.org/. Access on: jul. 02, 2023.

RESCK, B. C. Química e mineralogia de solos vulcânicos das Ilhas Deception e Penguin, Antártica Marítima. 2011. Thesis (Master Degree in Soils and Plant Nutrition). Universidade Federal de Viçosa, Viçosa, 2011.

RIBEIRO RODRIGUES, L. C. O contexto Geológico Estrutural do Parque Natural do Caraça e Adjacências, Quadrilátero Ferrífero, 1992. Thesis (Master Degree), Universidade de Brasília. 133pp. SHAW, G. Museum Leverianum, Containing Select Specimens from the Museum of the Late Sir Ashton Lever: With Descriptions in Latin and English. J. Parkinson. 1796.

TEIXEIRA, P. C; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA W. G. Manual de métodos de análise de solo. Empresa Brasileira de Pesquisa Agropecuária, pp. 573, 2017, Rio de Janeiro.

TRAJANO, E.; GALLAO, J. E.; BICHUETTE, M. E. Spots of high diversity of troglobites in Brazil: the challenge of measuring subterranean diversity. Biodiversity and Conservation, v. 25, pp. 1805-1828, 2016. https://doi.org/10.1007/s10531-016-1151-5

YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science & Plant Analysis, v. 19, pp. 1467–1476, 1988. https://doi.org/10.1080/00103628809368027

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 André Luiz Miranda Reis, Nicolo Clemente, André Luiz Lopes de Faria, Rodrigo Cupertino Bernardes, Liovando Marciano da Costa

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...