Morphological characterization and genetic diversity based on the melon root system
DOI:
https://doi.org/10.14393/BJ-v41n0a2025-70971Keywords:
Cucumis melo, Genetic variability, Root morphology.Abstract
Studies on plant root system architecture may yield valuable data for genetic improvement programs for developing cultivars that acquire water and nutrients more efficiently. This study used morphological descriptors to characterize the root system and evaluate genetic diversity among 30 melon accessions. A completely randomized experiment was conducted with 30 treatments and 5 replications. The plot consisted of one seedling. After seed germination, five seedlings were fixed in a dried growth medium for 12 days. Then, they were scanned and measured for primary root length and primary root neck diameter. Root hairs were visually evaluated. Finally, basal root angles were measured. The accessions diverged genetically regarding the root system morphological characteristics. The primary root neck diameter contributed the most to the dissimilarity between the accessions (43.06%). The A-50 accession stood out for the highest mean for morphological characteristics. It may represent a reference in genetic improvement programs to develop cultivars that acquire water and nutrients more efficiently.
References
ALAGUERO-CORDOVILLA, A. et al. Morphological characterization of root system architecture in diverse tomato genotypes during early growth. International journal of molecular sciences. 2018, 19(2), 3888. https://doi.org/10.3390/ijms19123888
ARAGÃO, F. A. S., et al. Descrição e Classificação Botânica do Meloeiro. In: GUIMARÃES, M. de A.; ARAGÃO, F. A. S. de. (Eds.). Produção de Melão. 1. ed. Viçosa: UFV, 2019. Cap. 3, p. 51-62.
ARAGÃO, F.A.S., et al. Genetic divergence among accessions of melon from traditional agriculture of the Brazilian Northeast. Genetics And Molecular Research. 2013, 12(4), 6356-6371. https://doi.org/10.4238/2013.December.6.3
BAYUELO-JIMÉNEZ, J.S., et al. Eficiencia a fósforo en germoplasma de maíz de la meseta p’urhépecha en etapa de plântula. Revista Fitotecnia Mexicana. 2012, 35(3), 199-208.
BARBOSA, B.L.R., et al. Morpho-agronomic diversity and botanical identification of melon accessions from northeastern Brazil. Revista Caatinga. 2023, 36(2), 251-261. https://doi.org/10.1590/1983-21252023v36n202rc
BRASIL, Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. 1. ed. Brasília: Mapa/ACS, 2009. 399 p. https://www.gov.br/agricultura/pt-br/assuntos/lfda/arquivos-publicacoes-laboratorio/regras-para-analise-de-sementes.pdf/view
CRUZ, C.D., REGAZZI, A.J. and CARNEIRO, P.C.S. Modelos biométricos aplicados ao melhoramento genético. 3. ed. Viçosa: UFV, 2014. 668 p.
DANTAS, A.C.A., et al. Diversity of melon accessions from northeastern Brazil and their relationships with germplasms of diverse origins. Journal American Society Horticulture Science. 2015, 140(5), 504-517. https://doi.org/10.21273/JASHS.140.5.504
DIAS, R. D. C., et al. Resistance to melon vine decline derived from Cucumis melo ssp. agrestis: genetic analysis of root structure and root response. Plant Breeding. 2004, 123(1), 66-72. https://doi.org/10.1046/j.1439-0523.2003.00944.x
FITA, A., NUEZ, F. and PICO, B. Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica. 2011, 181(3), 323-339. https://doi.org/10.1007/s10681-011-0432-z
FITA, A.; PICO, B.; NUEZ, F. Implications of the Genetics of Root Structure in Melon Breeding. Journal of the American Society for Horticultural Science. 2006, 131(3), 372-379.
GOMES, D.A., et al. Estimativas de dissimilaridade genética, índices de seleção e correlações em germoplasma de meloeiro. Horticultura Brasileira. 2021, 39(4), 046-051. https://doi.org/10.1590/s0102-0536-20210107
GONÇALVES, S.L. and LYNCH, J.P. Raízes de plantas anuais: tolerância a estresses ambientais, eficiência na absorção de nutrientes e métodos para seleção de genótipos. Londrina: Embrapa Soja, 2014. 67 p.
HO, M.D., et al. Roots architectural tradeoffs for water and phosphorus acquisition. Functional Plant Biology. 2005, 32, 737-748. https://doi.org/10.1071/FP05043
IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Produção Agrícola Municipal. Rio de Janeiro: IBGE, 2025.
JUNGK, A. Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science. 2001, 164(2), 121-129. https://doi.org/10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6
KOEVOETS, Iko T. et al. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in plant science. 2016, 7, 1335. https://doi.org/10.3389/fpls.2016.01335
Kolde, R. (2010). pheatmap: Pretty Heatmaps [dataset]. In CRAN: Contributed Packages. The R Foundation. https://doi.org/10.32614/cran.package.pheatmap
LI, P., et al. Root morphological and physiological adaptations to low phosphate enhance phosphorus efficiency at melon (Cucumis melo L.) seedling stage. Horticulturae. 2022, 8(7), 636. https://doi.org/10.3390/horticulturae8070636
LYNCH, J.P., CHIMUNGU, J. G. and BROWN, K.M. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. Journal of Experimental Botany. 2014, 65(21), 6155-6166. https://doi.org/10.1093/jxb/eru162
LYNCH, J.P. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New phytologist. 2019, 223(2), 548-564. https://doi.org/10.1111/nph.15738
LYNCH, J.P., et al. Root anatomy and soil resource capture. Plant and Soil. 2021, 466(1), 21-63. https://doi.org/10.1007/s11104-022-05416-2
LYNCH, J. P. Harnessing root architecture to address global challenges. The Plant Journal. 2022, 109(2), 415-431. https://doi.org/10.1111/tpj.15560
LYNCH, J.P., et al. Root phenotypes for improved nitrogen capture. Plant Soil. 2024, (502) 31–85. https://doi.org/10.1007/s11104-023-06301-2
MACÊDO, S.S., et al. Botanical identification and genetic diversity in melons from family farming in the state of maranhão. Revista Caatinga. 2017, 30(3), 602-613. https://doi.org/10.1590/1983-21252017v30n308rc
MIGUEL, M.A., POSTMA, J.A. and LYNCH, J.P. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition. Plant Physiology. 2015, 167(4), 1430–1439. https://doi.org/10.1104/pp.15.00145
NASCIMENTO, L. et al. Eficiência de uso de fósforo por genótipos de meloeiro. Revista Brasileira de Engenharia Agrícola e Ambiental. 2023, 27(1), 9-17, 2023. https://doi.org/10.1590/1807-1929/agriambi.v27n1p9-17
NIU, Y.F., et al. Responses of root architecture development to low phosphorus availability: a review. Annals of botany. 2013, 112(1), 391-408. https://doi.org/10.1093/aob/mcs285
NUNES, G.H.S., et al. Melhoramento de melão. In: NICK, C.; BORÉM, A. (org.) Melhoramento de hortaliças. 1. ed. Viçosa: UFV, 2016. cap. 11, pp. 331-363.
PAEZ-GARCIA, A., et al. Root traits and phenotyping strategies for plant improvement. Plants. 2015, 4 (2), 334-355. https://doi.org/10.3390/plants4020334
PEREIRA, W.B., et al. Produção e qualidade de melões sob diferentes arranjos do sistema de irrigação e coberturas do solo. Revista Brasileira de Meteorologia. 2021, 36(2), 285-294, 2021. https://doi.org/10.1590/0102-77863620121
REZENDE, M.P.G., et al. Conformação corporal de equinos de diferentes grupos genéticos. Ciência Animal Brasileira. 2016, 17(3), 316-326. https://doi.org/10.1590/1089-6891v17i321194
LIJA, M. and BEEVY, S. Suhara. A Review on the diversity of Melon. Plant Sci. Today. 2021, (8), 995-1003. https://doi.org/10.14719/pst.1300
SILVEIRA, D.L., et al. Genetic divergence in maize regarding grain yield and tassel traits. Revista Ciência Agronômica. 2021, 52(4), 100-110. https://doi.org/10.5935/1806-6690.20210060
SILVA, E.M., et al. Compatibility of Pathogen-Resistant Melon Rootstocks: Effects on Fruit Yield, Quality, and Biometric Traits. Revista Caatinga. 2025, 38, 1-11. https://doi.org/10.1590/1983-21252025v3812736rc
TAIZ, L., et al. Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, 2017, 888p
UGA, Y., et al. Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nature Genetics. 2013, 45, 1097-1102. https://doi.org/10.1038/ng.2725
VAZ-DE-MELO, A., et al. Seleção precoce e fenotipagem de linhagens de milho quanto à arquitetura das raízes seminais. Bioscience Journal. 2013, 29(1), 1532-1538. https://seer.ufu.br/index.php/biosciencejournal/article/view/11649
VIEIRA, R.F., JOCHUA, C.N., LYNCH, J.P. Method for evaluation of root hairs of common bean genotypes. Pesquisa Agropecuária Brasileira. 2007, 42(9), 1365-1368. https://doi.org/10.1590/S0100-204X2007000900020
YUGUDA, T.K., et al. Incorporating water loss from water storage and conveyance into blue water footprint of irrigated sugarcane: A case study of Savannah Sugar Irrigation District, Nigeria. Science of the Total Environment. 2020, 715(1), 136886. https://doi.org/10.1016/j.scitotenv.2020.136886
ZHANG, J., et al. Genetic diversity analysis and variety identification using SSR and SNP markers in melon. BMC Plant Biology. 2023, 23(1), 1-10. https://doi.org/10.1186/s12870-023-04056-7
ZHUO, Z., et al. Identifying the position of the compacted layer by measuring soil penetration resistance in a dryland farming region in Northeast China. Soil Use and Management. 2020, 36(3), 494-506. https://doi.org/10.1111/sum.12576
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nickson Fernandes de Oliveira Carvalho, Glauber Henrique de Sousa Nunes, José Hamilton Costa Filho, Ruth Mainá Penha da Silva, Adriano Ferreira Martins, Denilson Eduardo Silva Dantas, Francisco Linco de Souza Tomaz, Cintya Mikaelly Pereira Gaia Souza

This work is licensed under a Creative Commons Attribution 4.0 International License.



