Reinforcement Learning Applied to a Cryptocurrency Portfolio in a Complexity Environment

Autores/as

  • Daniel Sousa Barra Universidade Federal de Santa Catarina
  • Helberte João França Almeida Universidade Federal de Santa Catarina
  • Rafael Jasper Feltrin Universidade Federal de Santa Catarina
  • Solange Regina Marin Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.14393/REE-v36n1a2021-50850

Resumen

Recently, cryptocurrencies have been used as financial assets and have presented positive returns, albeit their volatility is high. This paper aims to elaborate a hypothetical cryptocurrency portfolio and to do so, employs machine learning and an optimization algorithm to define the ideal amount to be allocated in each asset. The results show the hypothetical portfolio presents superior returns and lesser volatility compared to other allocation strategies.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Helberte João França Almeida, Universidade Federal de Santa Catarina

    Economia

Publicado

2020-12-21

Número

Sección

Artigos

Cómo citar

BARRA, Daniel Sousa; ALMEIDA, Helberte João França; JASPER FELTRIN, Rafael; MARIN, Solange Regina. Reinforcement Learning Applied to a Cryptocurrency Portfolio in a Complexity Environment. Revista Economia Ensaios, Uberlândia, Minas Gerais, Brasil, v. 36, n. 1, 2020. DOI: 10.14393/REE-v36n1a2021-50850. Disponível em: https://seer.ufu.br/index.php/revistaeconomiaensaios/article/view/50850. Acesso em: 19 jan. 2026.