Reinforcement Learning Applied to a Cryptocurrency Portfolio in a Complexity Environment

Authors

  • Daniel Sousa Barra Universidade Federal de Santa Catarina
  • Helberte João França Almeida Universidade Federal de Santa Catarina
  • Rafael Jasper Feltrin Universidade Federal de Santa Catarina
  • Solange Regina Marin Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.14393/REE-v36n1a2021-50850

Abstract

Recently, cryptocurrencies have been used as financial assets and have presented positive returns, albeit their volatility is high. This paper aims to elaborate a hypothetical cryptocurrency portfolio and to do so, employs machine learning and an optimization algorithm to define the ideal amount to be allocated in each asset. The results show the hypothetical portfolio presents superior returns and lesser volatility compared to other allocation strategies.

Downloads

Download data is not yet available.

Author Biography

Helberte João França Almeida, Universidade Federal de Santa Catarina

Economia

Published

2020-12-21

How to Cite

BARRA, D. S. .; ALMEIDA, H. J. F.; JASPER FELTRIN, R. .; MARIN, S. R. . Reinforcement Learning Applied to a Cryptocurrency Portfolio in a Complexity Environment. Revista Economia Ensaios, Uberlândia, Minas Gerais, Brasil, v. 36, n. 1, 2020. DOI: 10.14393/REE-v36n1a2021-50850. Disponível em: https://seer.ufu.br/index.php/revistaeconomiaensaios/article/view/50850. Acesso em: 23 nov. 2024.

Issue

Section

Artigos