Multifunctional fluorescent Pseudomonas: effects on maize development and tools for their selection

Authors

DOI:

https://doi.org/10.14393/BJ-v40n0a2024-73324

Keywords:

AACDesaminase, Phosphates solubilization, Rhizobacteria, Siderophore, Zea mays

Abstract

Maize is one of the most cultivated cereals worldwide. Despite the low nutrient availability in the soil, high amounts of fertilizers are applied causing economic and environmental impacts. Then, Plant Growth Promoting Rhizobacteria (PGPR) as Fluorescent Pseudomonas can be utilized as an alternative.  The present work aims to analyze the effect of Pseudomonas isolates on maize development and production and verify the relationship between growth mechanisms and IAA production. Sixteen Pseudomonas isolates were tested in vitro to produce IAA, ACC deaminase, siderophores, and solubilize Fe and Al phosphates. Three isolates (CBSAL02, CBSAL05, and CBSAL06) were selected for the field experiment, in which an A. brasilense inoculant was the control, generating five treatments with four replications. More than 50% of the isolates demonstrated the tested mechanisms. Only CBSAL05 did not produce siderophore or could fix N. Inoculations with A. brasilense and Pseudomonas isolates increased leaf N content among the selected isolates. The CBSAL06 isolate increased productivity, thus demonstrating the potential use as an inoculant.

Downloads

Download data is not yet available.

References

ARNDT, C. et al. The Ukraine war and rising commodity prices: Implications for developing countries. Global Food Security. 2023, 36, e100680. https://doi.org/10.1016/j.gfs.2023.100680

BALBINOT, W.G., RODRIGUES, S. and BOTELHO, G.R. Isolates of Bacillus sp. from garlic: effect on corn development and plant growth-promoting mechanisms. Rev Bras Ciênc Solo. 2020, 44, e0200043. https://doi.org/10.36783/18069657rbcs20200043

BARBOSA, J.Z. et al. National-scale spatial variations of soil phosphorus retention capacity in Brazil. Phys Chem Earth. 2022, 128, e103271. https://doi.org/10.1016/j.pce.2022.103271

BARROSO, C.B. and NAHAS, E. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl Soil Ecol. 2005, 29, 73-83. https://doi.org/10.1016/j.apsoil.2004.09.005

BERND, L.P. et al. Inoculação de Pseudomonas fluorescens e adubação NPK na composição química e contaminação fungo-fumonisina de milho. Rev Bras Eng Agríc Ambient. 2014, 18, 1274-1280. https://doi.org/10.1590/1807-1929/agriambi.v18n12p1274-1280

BILAL, S. et al. Comparative effect of inoculation of phosphorus-solubilizing bacteria and phosphorus as sustainable fertilizer on yield and quality of mung bean (Vigna radiata L.). Plants. 2021, 10, e2079. https://doi.org/10.3390/plants10102079

BOOIJ, R., VALENZUELA, J.L. and AGUILERA, C.A. 2000. Determination of crop nitrogen status using non-invasive methods. In: HAVERKORT, A.J. and MACKERRON, D.K.L. eds. Management of nitrogen and water in potato production, Wageningen: Wageningen Pers, pp. 72-82.

BOTELHO, G.R. et al. Nodulation and biological nitrogen fixation of common bean rhizobia from Santa Catarina Plateau soils. Semina: Ciênc Agrár. 2023, 44, 1507-1522. https://doi.org/10.5433/1679-0359.2023v44n4p1235

BOTELHO, G.R. and BRASIL, M. Rizobactérias: uma visão geral da importância para plantas e agrossistemas. Ambientes em movimento. 2023, 1, 22-46. https://ojs.sites.ufsc.br/index.php/am/article/view/6389

BOTELHO, G.R. et al. Plant growth promoting bacteria from garlic sowed at Curitibanos micro-region - Santa Catarina – Brazil. Cienc Suelo. 2019, 37, 51-65.

CONAB- COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira: grãos: Safra 2022/23- 12º levantamento, 2023. Available at: <https://www.conab.gov.br/info-agro/safras/graos>. Accessed on: Sep 13, 2023.

DARTORA, J. et al. Adubação nitrogenada associada à inoculação com Azospirillum brasilense e Herbaspirillum seropedicae na cultura do milho. Rev Bras Eng Agríc Ambient. 2013, 17, 1023-1029. https://doi.org/10.1590/S1415-43662013001000001

De OLIVEIRA, A.A. et al. Nitrogênio e formas de aplicação de Azospirillum brasilense em milho cultivado em solo arenoso. Res Soc Dev. 2022, 11, e56411335819. http://dx.doi.org/10.33448/rsd-v11i14.35819

Dos SANTOS, R. et al. Fixação biológica de nitrogênio com Azospirillum brasilense na cultura do milho. Braz J Dev. 2022, 8, 49830-49847. http://dx.doi.org/10.34117/bjdv8n7-075

ELHAISSOUFI, W. et al. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Front Plant Sci. 2020, 11: e979. https://doi.org/10.3389/fpls.2020.00979

FERNANDES, E., GUIMARÃES, B.A. and MATHEUS, R.R. 2009. Principais empresas e grupos brasileiros no setor de fertilizantes. Rio de Janeiro: BNDS Setorial, p.203-228.

FERREIRA, D.F. SISVAR: um programa para análises e ensino de estatística. Rev Symp6. 2008, 36-41. https://des.ufla.br/~danielff/meusarquivospdf/art63.pdf

FOX, J. and WEISBERG, S. An R companion to applied regression. Califórnia: Sage Publications, 2019.

FUKAMI, J. et al. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Expr, 2017, 7, e.153. https://doi.org/10.1186/s13568-017-0453-7

GAMALERO, E. and GLICK, B.R. Bacterial modulation of plant ethylene levels. 2015, 169, 13-22. https://doi.org/10.1104/pp.15.00284

GLICK, B.R. and NASCIMENTO, F.X. Pseudomonas 1-Aminocyclopropane-1-carboxylate (ACC) deaminase and its role in beneficial plant-microbe interactions. Microorganisms. 2021, 9, e2467. https://doi.org/10.3390/microorganisms9122467

GOMES, L.S. et al. Resistência ao acamamento de plantas e ao quebramento do colmo em milho tropical. Pesqui Agropecu Bras . 2010, 45, 140-145. https://www.scielo.br/j/pab/a/PSYzCrh8nBwhQ6Yv3NGmbGz/?format=pdf&lang=pt

GUIMARÃES, V.F. and KLEIN, J. Pseudomonas fluorescens, inoculada via sementes, promove crescimento e aumenta a disponibilidade de fósforo na cultura do milho. Res Soc Dev. 2023, 12, e13412641749. https://doi.org/10.55905/rdelosv16.n46-011

GUPTA, S. and PANDEY, S. ACC Deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Front Microbiol. 2019, 10, 1506. https://doi.org/10.3389/fmicb.2019.01506

HIDER, R.C. and KONG, X. Chemistry and biology of siderophores. Nat Prod Rep. 2010, 27, 637-657. https://doi.org/10.1039/b906679a

HONMA, M. and SHIMOMURA, T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 1978, 42, 1825-1831. https://doi.org/10.1080/00021369.1978.10863261

IQBAL, N. et al. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci. 2017, 8, 475. https://doi.org/10.3389/fpls.2017.00475

JIANG, S. et al. Maize growth promotion by inoculation with an engineered ammonium-excreting strain of nitrogen-fixing Pseudomonas stutzeri. Microorganisms. 2022, 10, e1986. https://doi.org/10.3390/microorganisms10101986

KASSAMBARA, A. and MUNDT, F. Factoextra: extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. 2020. https://CRAN.R-project.org/package=factoextra

KE, X. et al. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol. 2019, 42, 248-260. https://doi.org/10.1016/j.syapm.2018.10.010

KESWANI, C et al. Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol , 2020, 104, 8549-8565. https://doi.org/10.1007/s00253-020-10890-8

KING, E.O., WARD, M. and RANEY, D.E.J. Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine. 1959, 44, 301-307. https://pubmed.ncbi.nlm.nih.gov/13184240/

KUMAR, B.P. et al. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal Agric Biotechnol. 2018, 15, 264-269. https://doi.org/10.1016/j.bcab.2018.06.019

LEMANCEAU, P. et al. Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants, and microbes. Plant Soil. 2009, 321, 513-535. https://doi.org/10.1007/s11104-009-0039-5

LOPES, A.S. and GUILHERME, L.R.G. Uso eficiente de fertilizantes e corretivos agrícolas: aspectos agronômicos, n. 4. São Paulo: Associação Nacional Para Difusão de Adubos. 2000.

LOPES, S.J. et al. Relações de causa e efeito em espigas de milho relacionadas aos tipos de híbridos. Ciência Rural. 2007, 37(6), 1536–1542. https://doi.org/10.1590/S0103-84782007000600005

LURTHY, T. et al. Impact of bacterial siderophores on iron status and ionome in pea. Front Plant Sci, 2020, 11, e730. https://doi.org/10.3389/fpls.2020.00730

MAZZUCO, V.R., TORRES JUNIOR, C.C. and BOTELHO, G.R. Fluorescent Pseudomonas spp. and Bacillus spp. for phosphate solubilization and growth promotion of garlic. Pesqui Agropecu Trop, 2023, 53, e75301. https://doi.org/10.1590/1983-40632023v5375301

MENDES, I. and REIS JUNIOR, F. 2003. Microrganismos e disponibilidade de fósforo (P) nos solos: uma análise crítica. Planaltina: Embrapa Cerrados, 26 p.

MUKHTAR, S. et al. Phylogenetic analysis of halophyte‐associated rhizobacteria and effect of halotolerant and halophilic phosphate‐solubilizing biofertilizers on maize growth under salinity stress conditions. J App Microbiol. 2020, 128, 556-573. https://doi.org/10.1111/jam.14497

NAHAS, E., CENTURION, J.F. and ASSIS, L.C. Microrganismos solubilizadores de fosfatos e produtores de fosfatases de vários solos. Rev Bras Ciênc Solo. 1994, 18, 43-48. https://doi.org/10.1590/S0006-87052002000300008

NASCIMENTO, F.X. et al. ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains. Arch Microbiol. 2019, 201, 817-822. https://doi.org/10.1007/s00203-019-01649-5

OLIVEIRA, M.A. et al. Desempenho agronômico de milho sob adubação mineral e inoculação das sementes com rizobactérias. Rev Bras Eng Agríc Ambient. 2012, 16, 1040-1046. https://doi.org/10.1590/S1415-43662012001000002

OLIVOTO, T. et al. Caracteres morfológicos e rendimento de grãos de híbridos simples de milho em diferentes ambientes. Revista de Ciências Agroveterinárias. 2018, 17, 462-471. https://doi.org/10.5965/223811711732018462

R CORE TEAM. 2021. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

RAIJ, B.V. et al. Recomendações de adubação e calagem para o Estado de São Paulo. Campinas: Instituto Agronômico, 1997.

RATZ, J.R. et al. Potencial biotecnológico de rizobactérias promotoras de crescimento de plantas no cultivo de milho e soja. Engevista. 2017, 9, 890-905. https://doi.org/10.22409/engevista.v19i4.894

RODRIGUES, R.B. et al. Opção de troca de produto na indústria de fertilizantes. Rev Adm. 2015, 50 129-140. https://doi.org/10.5700/rausp1189

REHM, K. et al. Rapid identification of pyoverdines of fluorescent Pseudomonas spp. by UHPLC-IM-MS. Biometals. 2023, 36, 19-34. https://doi.org/10.1007/s10534-022-00454-w

REPKE, R.A. et al. Eficiência da Azospirillum brasilense combinada com doses de nitrogênio no desenvolvimento de plantas de milho. Revista Brasileira de Milho Sorgo. 2013, 12, 214-226. https://doi.org/10.18512/1980-6477/rbms.v12n3p214-226

SANGOI, L. et al. Sustentabilidade do colmo em híbridos de milho de diferentes épocas de cultivo em função da densidade de plantas. Revista de Ciências Agroveterinárias. 2002, 1, 1-10. https://doi.org/10.5965/223811710122002063

SANTOS, H.G. et al. Sistema brasileiro de classificação de solos. 5nd ed. Brasília: Embrapa, 2018.

SCHWYN, B. and NEILANDS, J.B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987, 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9

SILVA, M.A. et al. Initial development of upland rice inoculated and co-inoculated with multifunctional rhizobacteria. Semina: Ciênc Agrár. 2023, 44, 273-284. https://doi.org/10.5433/1679-0359.2023v44n1p273

SILVA, M.A. et al. Inoculation and co-inoculation with multifunctional rhizobacteria for the initial development of soybean. Pesqui Agropecu Trop. 2022, 52, e73558. https://doi.org/10.1590/1983-40632022v5273558

SBCS. Sociedade brasileira de ciência do solo. Manual de Adubação e de Calagem para os Estados do Rio Grande do Sul e de Santa Catarina. Porto Alegre: Sociedade Brasileira de Ciência do Solo. Comissão de Química e Fertilidade do Solo, 2004.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6nd ed., São Paulo: Artmed Editora, 2017.

TEDESCO, M.J. et al. Análise do solo, planta e outros materiais. 2ed. rev. ampl. Porto Alegre: UFRGS, Departamento de Solos, 1995.

TORRES, D. et al. Previous Incubation of Bradyrhizobium japonicum E109 and Azospirillum argentinense Az39 (formerly A. brasilense Az39) Improves the Bradyrhizobium Soybean Symbiosis. J Soil Sci Plant Nutr. 2022, 22, 4669-4682. http://dx.doi.org/10.1007/s42729-022-00948-z

TURATTO, M.F. et al. Control potential of Meloidogyne javanica and Ditylenchus spp. using fluorescent Pseudomonas and Bacillus spp. Braz J Microbiol. 2018, 49, 54-58. https://doi.org/10.1016/j.bjm.2017.03.015

WIN, K.T. et al. Identifcation of Pseudomonas strains for the biological control of soybean red crown root rot. Sci Rep. 2022, 12, 14510. https://doi.org/10.1038/s41598-022-18905-2

ZBORALSKI, A. and FILION, M. Pseudomonas spp. can help plants face climate change. Front Microbiol. 2023, 14, e1198131. https://doi.org/10.3389/fmicb.2023.1198131

ZHANG, G. et al. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents. Plant Physiol Biochem. 2018, 125: 178-184. https://doi.org/10.1016/j.plaphy.2018.02.005

ZUCARELI, C. et al. Eficiência agronômica da inoculação à base de Pseudomonas fluorescens na cultura do milho. Rev Agrarian. 2011, 4, 152-157. https://ojs.ufgd.edu.br/index.php/agrarian/article/view/569/754

Downloads

Published

2024-09-19

How to Cite

DEMENECK BELEN, G., CYSNEIROS, V.C., GUIMARÃES, A.G. and BOTELHO, G.R., 2024. Multifunctional fluorescent Pseudomonas: effects on maize development and tools for their selection. Bioscience Journal [online], vol. 40, pp. e40046. [Accessed2 October 2024]. DOI 10.14393/BJ-v40n0a2024-73324. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/73324.

Issue

Section

Agricultural Sciences