Effect of Urochloa brizantha density on competition with Myracrodruon urundeuva

Authors

  • Murilo Antônio Oliveira Ruas Universidade Federal de Minas Gerais https://orcid.org/0000-0002-1270-0165
  • Leonardo David Tuffi Santos Universidade Federal de Minas Gerais https://orcid.org/0000-0002-9362-778X
  • Luan Mateus Silva Donato Donato Universidade Federal de Minas Gerais https://orcid.org/0000-0002-3906-2431
  • José Ângeles Moreira de Oliveira Oliveira Universidade Federal de Minas Gerais
  • Victor Augustus Vasconcelos de Oliveira Universidade Federal de Minas Gerais
  • Rodinei Facco Pegoraro Universidade Federal de Minas Gerais

DOI:

https://doi.org/10.14393/BJ-v41n0a2025-76005

Keywords:

Absorption efficiency, Aroeira, Coexistence, Macronutrients, Weed grass.

Abstract

Cultivating Myracrodruon urundeuva seedlings in forest restoration or intercropped areas is significantly challenging due to the competition with weeds, especially forage grasses. This study evaluated the influence of Urochloa brizantha density on the initial growth, physiological response, and macronutrient utilization of M. urundeuva seedlings. The experiment used randomized blocks with six replications. It included different densities of the U. brizantha competitor, where 0 (control), 14, 28, and 42 individuals/m² corresponded to 0, 1, 2, and 3 competitor plants per pot, respectively. U. brizantha competition reduced the photosynthetic rate (> 35%), water use efficiency (> 23%), and shoot dry mass (> 24%) of M. urundeuva compared to the controls. U. brizantha also affected M. urundeuva’s P and K absorption more than other macronutrients. Regardless of competitor density, the coexistence of U. brizantha influences the photosynthesis, water use, and macronutrient absorption, especially P and K, by M. urundeuva, providing lower biomass of the tree species. The U. brizantha competitor, grown at low densities, stimulated root growth, height gain, and the accumulation of N, S, and Mg in the shoot, as well as all macronutrients in M. urundeuva roots.

References

AMORIM, S.P., et al. Grasses and legumes as covers crops affect microbial attributes in oxisol in the Cerrado (Savannah environment) in the northeast region. Revista Caatinga. 2020, 33, 31-42. https://doi.org/10.1590/1983-21252020v33n104rc

BACHA, A.L., et al. Interference of seeding and regrowth of signal grass weed (Urochloa decumbens) during the initial development of Eucalyptus urograndis (E. grandis × E. urophylla). Australian Journal of Crop Science. 2016, 10, 322-330. http://dx.doi.org/10.21475/ajcs.2016.10.03.p6995

BRASIL. Instrução Normativa n° 6, de 23 de setembro de 2008. Reconhecer como espécies da flora brasileira ameaçadas de extinção aquelas constantes do anexo I a esta Intrusão Normativa. Diário Oficial da União: seção 1, Brasília, DF. 185. 75-83, 24 set. Available from https://www.ibama.gov.br/sophia/cnia/legislacao/MMA/IN0006-230908.PDF (Accessed 08.10.2023).

BRASIL. Lei nº 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa [...]. Diário Oficial da União: seção 1, Brasília, DF, ano CXLIX, n. 102. 1, 28 de maio de 2012. Available from https://pesquisa.in.gov.br/imprea/jsp/visualiza/index.jsp?jornal=1&pagina=1&data=28/05/2012&totalArquivos=168 (Accessed 08.10.2023).

CAMPBELL, T.A. and HOLDO, R.M. Competitive response of savanna tree seedlings to C4 grasses is negatively related to photosynthesis rate. Biotropica. 2017, 49. 774-777. https://doi.org/10.1111/btp.12484

CAPO L, F, M., et al. Natural distribution of Myracrodruon urundeuva Fr. All. in Brazil at current and future climate scenarios due to global climate change. Revista Árvore. 2022, 46. 1-11. https://doi.org/10.1590/1806-908820220000009

CARVALHO PER. Espécies florestais brasileiras: Recomendações silviculturais, potencialidades e uso da madeira. Colombo: EMBRAPA-CNPF/SPI, 640p. 1994.

CLIMATE DATA. Dados climáticos para cidades mundiais. [S.l.]: CLIMATE DATA, c2023. Available from https://pt.climate-data.org/. (Accessed 11.02.2024).

COLMANETTI, M. A. A., et al. Effect of increasing densities of Urochloa brizantha cv. Marandu on Eucalyptus urograndis initial development in silvopastoral system. Journal of Forestry Research. 2019, 30. (2), 537-543. DOI: https://doi.org/10.1007/s11676-018-0635-4

CONCENÇO, G., et al. Fotossíntese de biótipos de azevém sob condição de competição. Planta Daninha. 2008, 26. (3), 595-600. DOI: https://doi.org/10.1590/S0100-83582008000300015

CURY, et al. Eficiência nutricional de cultivares de feijão em competição com plantas daninhas. Planta Daninha. 2023 31. 79-88. https://doi.org/10.1590/S0100-83582013000100009

Critical Ecosystem Partnership Fund. Ecosystem profile: Cerrado biodiversity hotspot full report. Supernova. 2018. https://www.cepf.net/our-work/biodiversity-hotspots/cerrado

FERREIRA et al. Aspectos fisiológicos de soja transgênica submetida à competição com plantas daninhas. Revista de Ciências Agrárias/Amazonian Journal of Agricultural and Environmental Sciences. 2015, 58 (2), 115-121. http://dx.doi.org/10.4322/rca.1745

FREITAS, A. F., MACIEL, J. C., SILVA, M. M., and SANTOS, J. B. Urochloa brizantha interference in the Phaseolus vulgaris radicular system fertilized with phosphorus. Planta Daninha. 2019, 37. 1-11. https://doi.org/10.1590/s0100-83582019370100055

GARAU, A. M., GHERSA, C.M., LEMCOFF, J.H. and BARAÑAO, J.J. Weeds in Eucalyptus globulus subsp. maidenii (F. Muell) establishment: effects of competition on sapling growth and survivorship. New Forests. 2009, 37 (3), 251-264. https://doi.org/10.1007/s11056-008-9121-8

GARDONI, L.C., et al. (2022). Content of phenolic compounds in mono floral aroeira honey and in floral nectary tissue. Pesquisa Agropecuária Brasileira. 2022, 57 (022802). 1-9. https://doi.org/10.1590/S1678-3921.pab2022.v57.02802

GBIF. Urochloa brizantha (A. Rich.) R.D. Webster in Gbif Secretariat (2023) GBIF Backbone Taxonomy. Checklist dataset. 2023. Accessed via GBIF.org on (Accessed 13.05.2024) https://doi.org/10.15468/39omei

LAFETÁ, B. O., et al. A Eficiência de utilização de macronutrientes em eucalipto por método não destrutivo estimados por redes neurais artificiais. Ciência Florestal. 2018, 28 (2), 613-623. http://dx.doi.org/10.5902/1980509832049

LIMA, S. F., et al. Suppression of Urochloa brizantha and U. ruzizieis by glyphosate underdoses. Revista Caatinga. 2019, 32 (3). 581–589. https://doi.org/10.1590/1983-21252019v32n302rc

LORENZI, H. Árvores brasileiras. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil-Vol.1 5º Edição P,24. 2008.

MACIEL, J. C., et al. Growth, nutrient accumulation, and nutritional efficiency of a clonal Eucalyptus hybrid in competition with grasses. Forests. 2022, 13 (8), 1157. https://doi.org/10.3390/f13081157

MATOS, C. C., et al. Physiological characteristics of coffee plants in competition with weeds. Bioscience Journal. 2023, 29 (5), 1111-1119.

MAZANCOURT, C and SCHWARTZ, M.W. Starve a competitor: Evolution of luxury consumption as a competitive strategy. Theoretical Ecology. 2010, 5, 37-49. https://doi.org/10.1007/s12080-010-0094-9

MEDEIROS, W. N., et al. Crescimento inicial e concentração de nutrientes em clones de Eucalyptus urophylla x Eucalyptus grandis sob interferência de plantas daninhas. Ciência Florestal. 2016, 26 (1), 147- 157. http://dx.doi.org/10.5902/1980509821099

NOVAIS, R.F., NEVES, J.C.L., and BARROS, N.F., (1991). Ensaio em ambiente controlado. IN: OLIVEIRA, A.J., GARRIDO, W.E., GRAÚJO, J.D. & LOURENÇO, s., eds. Métodos de pesquisa em fertilidade do solo. Brasília, Embrapa-SEA, p.189-254

OLIVEIRA, A.P.P., et al. Can allelopathic grasses limit seed germination and seedling growth of mutambo? A test with two species of brachiaria grasses. Planta Daninha. 2016, 34 (4), 639-648. https://doi.org/10.1590/S0100-83582016340400003

R CORE TEAM. R: A Language and Environment for Statistical Computing. Viena: R Foundation for Statistical Computing, (2023). Available from https://www.r-project.org/. (Accessed 11 Feb. 2024).

RABELO, B.S., et al. M Effects of native and invasive grasses on the survival. Biological Invasions. 2023, 25, 2697–2711. https://doi.org/10.1007/s10530-023-03068-6

RILEY, R.C., et al. Resource allocation to growth or luxury consumption drives mycorrhizal responses. Ecology Letters. 2019, 22 (11), 1757–1766. https://doi.org/10.1111/ele.13353

RODRIGUES, A. A., et al. Cerrado deforestation threatens regional climate and water availability for agriculture and ecosystems. Global Change Biology. 2022, 28 (22), 6807–6822. https://doi.org/10.1111/gcb.16386

ROSIM, C.C, HISING, T.Y., and PAULA, R.C. Nutrient use efficiency in interspecific hybrids of eucalypt. Revista Ciência Agronômica. 2016, 47 (3), 540. https://10.5935/1806-6690.20160065

RUSSO, G., et al. Cerrado The Brazilian savanna's contribution to GHG emission and to climate solution (Issue December). Instituto de Pesquisa Ambiental da Amazônia (IPAM). 2018. https://ipam.org.br/wp-content/uploads/2018/12/Policy-Brief-Cerrado-COP24-en-1.pdf

SANTOS, E. M. S., SANTOS, H. O., and GONÇALVES, J. R. S. M (2018). Quali-quantitative characterization of the honey from Myracrodruon urundeuva Allemão (Anacardiceae - Aroeira): macroscopic, microscopic, physico-chemical and microbiological parameters. African Journal of Biotechnology. 2028, 17 (51), 1422-1435. https://doi.org/10.5897/AJB2018.16633

SANTOS, M. E. R., et al. Características estruturais de perfilhos vegetativos e reprodutivos em pastos diferidos de capim braquiária. Ciência Animal Brasileira. 2008, 11 (3), 492-502. https://doi.org/10.5216/cab.v11i3.4957

SANTOS, M. V., et al. Controle de Brachiaria brizantha, com uso do glyphosate, na formação de pastagem de Tifton 85 (Cynodon spp.). Planta Daninha. 2007, 25 (1), 149-155. https://doi.org/10.1590/S0100-83582007000100016

SANTOS, M. V., et al. Physiological aspects of acacia and eucalyptus in competition with Brachiaria. Australian Journal of Crop Science. 2015, 9, 210-214.

SILVA, F. C. Manual de análises químicas de solos, plantas e fertilizantes. 2. ed. rev. ampl. Brasília: Embrapa Informação Tecnológica. 2009, 120-122

SILVA, D. V., et al. Glyphosate herbicide use in Urochloa brizantha management in intercropping with herbicide-resistant maize. Planta Daninha. 2016, 34 (1), 133-141. https://doi.org/10.1590/S0100-83582016340100014

Silva, W. D., et al. Taxa transpiratória de mudas de eucalipto em resposta a níveis de água no solo e à convivência com Brachiaria brizantha. Pesquisa Agropecuária Brasileira. 2000, 35 (5), 923-928, https://doi.org/10.1590/S0100-204X2000000500009

SWIADER, J. M., CHYAN, Y., and FREIJI, F. G. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids. Journal of Plant Nutrition. 2008, 17 (10), 1687–1699. https://doi.org/10.1080/01904169409364840

TEDESCO, M. J., et al. Análise de solo, plantas e outros materiais. Ed. 2. Porto Alegre: Universidade Federal do Rio Grande do Sul. 1995.

TOLEDO, R. E. B., et al. Faixas de controle de plantas daninhas e seus reflexos no crescimento de plantas de eucalipto. Scientia Forestalis. 2003, 64, 78-92

TOLEDO, R. E. B., et al. Effects of weed control periods on initial growth and development of eucalypt. Planta Daninha. 2000, 18, 395-404. https://doi.org/10.1590/S0100-83582000000300002

ULBRICHT, F. R. C., et al. An Overview of the genetics and genomics of the Urochloa species most commonly used in pastures. Frontiers in Plant Science. 2021, 12, 01-22 https://doi.org/10.3389/fpls.2021.770461

Downloads

Published

2025-08-11

Issue

Section

Agricultural Sciences

How to Cite

Effect of Urochloa brizantha density on competition with Myracrodruon urundeuva. Bioscience Journal [online], 2025. [online], vol. 41, pp. e41016. [Accessed5 December 2025]. DOI 10.14393/BJ-v41n0a2025-76005. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/76005.