Physicochemical interactions and viability of Cordyceps fumosorosea associated with adjuvants
DOI:
https://doi.org/10.14393/BJ-v41n0a2025-74980Keywords:
Agricultural pest management, Biological control, Entomopathogenic fungus, Pesticide application technology, Phytosanitary sprays, Tank mixture.Abstract
Adding adjuvants to crop protection sprays is common practice; however interactions among formulations must be better understood to prevent reducing efficacy, especially for those containing microorganisms for biological control. This study aimed to assess physicochemical interactions, droplet formation, and viability of the fungus Cordyceps fumosorosea mixed with an adjuvant. The experiments followed a completely randomized design with four replications and six treatments. The treatments included the fungus associated with five adjuvants: polyether/silicone copolymer (1 - PSC), alkyl phosphate ester (2 - PAE), soybean oil methyl ester (3 - SME), orange peel oil (4 - OPO), lecithin/propionic acid mixture (5 - LPA), and a control (only fungus) (6). The LPA adjuvant was physically compatible with the fungus, unlike others that showed phase separation. All adjuvants reduced the contact angle and surface tension compared to the control, with treatments PSC and LPA presenting the lowest values, respectively. All adjuvants reduced droplet size compared to the control. Treatment LPA produced the smallest droplet size, the highest risk of drift, and the most droplet uniformity. The highest viscosity values originated from solutions in treatment LPA, followed by PAE. Formulations with the LPA adjuvant plus the bioinsecticide yielded the lowest pH and the highest electrical conductivity values, followed by OPO. Even with the low pH, the LPA treatment did not affect the viability of the entomopathogenic fungus. It is evident that the adjuvants affected the physicochemical characteristics of the solutions, and treatment LPA yielded the best results for physicochemical compatibility, as it did not reduce the viability of the entomopathogenic fungus.
References
ARNOSTI, A. et al. Interactions of adjuvants on adhesion and germination of Isaria fumosorosea on adults of Diaphorina citri. Scientia Agricola. 2019, 76(6), 487-493. https://doi.org/10.1590/1678-992X-2017-0240
ASSUNÇÃO, H. H. T. D. et al. Adjuvants plus phytosanitary products and the effects on the physical-chemical properties of the spray liquids. Bioscience Journal. 2019, 35(6), 1878-1885. https://doi.org/10.14393/BJ-v35n6a2019-46994
Associação Brasileira de Normas Técnicas - ABNT. NBR 13875:2014. Agrotóxicos e afins - Avaliação de compatibilidade físico-química. Rio de Janeiro: 2014. 12 p.
AVERY, P.B. et al. Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) blastospores with agricultural chemicals used for management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects. 2013, 4(4), 694-711. https://doi.org/10.3390/insects4040694
BUENO, M.R., CUNHA, J.P.A.R., and ROMAN, R.A.A. Tamanho de gotas de pontas de pulverização em diferentes condições operacionais por meio da técnica de difração do raio laser. Engenharia Agrícola. 2013, 33(5), 976–985. https://doi.org/10.1590/S0100-69162013000500009
CHANDLER, D. 2017. Basic and applied research on entomopathogenic fungi. In: LACEY, L.A. ed. Microbial control of insect and mite pests, London: Academic Press, pp 69-89.
CORRÊA, B. et al. Comparative analysis of blastospore production and virulence of Beauveria bassiana and Cordyceps fumosorosea against soybean pests. BioControl. 2020, 65(3), 323-337. https://doi.org/10.1007/s10526-020-09999-6
CORTES, O. et al. Determination of the Electrical Conductivity, pH and Fertilizer Concentration of Insecticide-Nematicide Solutions and Nutritional Cocktails Applied to Pineapple (Ananas comosus MD-2). International Journal of Current Microbiology and Applied Sciences. 2024, 13(06), 119-133. https://doi.org/10.20546/ijcmas.2024.1306.013
COSTA, L.L. et al. Droplet spectra and surface tension of spray solutions by biological insecticide and adjuvants. Engenharia Agrícola. 2017, 37(2), 292-301. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n2p292-301/2017
CUNHA, J.P.A.R., and ALVES G.S. Características físico-químicas de soluções aquosas com adjuvantes de uso agrícola. Interciência. 2009, 34(9), 655-659.
CUNHA, J.P.A.R., ALVES, G.S., and MARQUES, R.S. Tensão superficial, potencial hidrogeniônico e condutividade elétrica de caldas de produtos fitossanitários e adjuvantes. Revista Ciência Agronômica. 2017, 48(2), 261-270. https://doi.org/10.5935/1806-6690.20170030
CZEPAK, C. et al. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesquisa Agropecuária Tropical. 2013, 43(1), 110-113. https://doi.org/10.1590/S1983-40632013000100015
DOS SANTOS, C.A.M. et al. Compatibility of Bt biopesticides and adjuvants for Spodoptera frugiperda control. Scientific Reports, 2021, 11(1), 5271. https://doi.org/10.1038/s41598-021-84871-w
DU, C. et al. Morphological, molecular and virulence characterisation of six Cordyceps spp. isolates infecting the diamondback moth, Pluttela xylostella. Biocontrol Science and Technology. 2021, 31(4) 373-386. https://doi.org/10.1080/09583157.2020.1854175
FERREIRA, P.H.U. et al. Physicochemical properties, droplet size and volatility of dicamba with herbicides and adjuvants on tank-mixture. Scientific Reports. 2020, 10(1), 1-11. https://doi.org/10.1038/s41598-020-75996-5
FORMENTINI, A.C. et al. Lepidoptera (Insecta) associated with soybean in Argentina, Brazil, Chile and Uruguay. Ciência Rural. 2015, 45(12), 2113-2120. https://doi.org/10.1590/0103-8478cr20141258
GREEN, J.M., and BEESTMAN, G.B. Recently patented and commercialized formulation and adjuvant technology. Crop Protection. 2007, 26(3), 320-327. https://doi.org/10.1016/j.cropro.2005.04.018
GRIESANG, F. et al. How Much Do Adjuvant and Nozzles Models Reduce the Spraying Drift? Drift in Agricultural Spraying. American Journal of Plant Sciences. 2017, 08(11), 2785-2794. http://dx.doi.org/10.4236/ajps.2017.811188
GRIESANG, F. et al. How do the droplet spectrum uniformity and spray volume of flat-fan nozzles influence fungicide spray distribution quality in soybeans?. Engenharia agrícola. 2022, 42(2), e20210122. http://dx.doi.org/10.1590/1809-4430-eng.agric.v42n2e20210122/2022
HOLKA, M., and KOWALSKA, J. The Potential of Adjuvants Used with Microbiological Control of Insect Pests with Emphasis on Organic Farming. Agriculture. 2023, 13(9), 1659. https://doi.org/10.3390/agriculture13091659
IOST, C.A., and RAETANO, C.G. Tensão superficial dinâmica e ângulo de contato de soluções aquosas com surfatantes em superfícies artificiais e naturais. Engenharia Agrícola. 2010, 30(4), 670-680. https://doi.org/10.1590/S0100-69162010000400011
LAGOGIANNIS, I. et al. Effect of Entomopathogenic Fungi on the survival of the lepidopteran Helicoverpa armigera. Applied Microbiology: Theory & Technology. 2020, 1, 59-65. https://doi.org/10.37256/amtt.122020334
LEI, Y. et al. Unraveling the mode of action of Cordyceps fumosorosea: Potential biocontrol agent against Plutella xylostella (Lepidoptera: Plutellidae). Insects. 2021, 12(2), 179. https://doi.org/10.3390/insects12020179
LI, Z. et al. Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Science and Technology. 2010, 20(2), 117-136. https://doi.org/10.1080/09583150903431665
MATUO, T. Técnicas de aplicação de defensivos agrícolas, 1ª ed. Jaboticabal: FUNEP, 1990.
MICHEREFF-FILHO, M. et al. Helicoverpa armigera Harm 1 Haplotype predominates in the Heliothinae (Lepidoptera: Noctuidae) complex infesting tomato crops in Brazil. Neotropical Entomology. 2021, 50(2), 258-268. https://doi.org/10.1007/s13744-020-00845-z
OLIVEIRA, R.B., and ANTUNIASSI, U. Caracterização física e química e potencial de deriva de caldas contendo surfatantes em pulverizações agrícolas. Energia na Agricultura. 2012, 27(1), 138-149. https://doi.org/10.17224/EnergAgric.2012v27n1p138-149
OLIVEIRA, R.B., ANTUNIASSI, U.R., and GANDOLFO, M.A. Spray adjuvant characteristics affecting agricultural spraying drift. Engenharia Agrícola. 2015, 35(1), 109-116. https://doi.org/10.1590/1809-4430-Eng.Agric.v35n1p109-116/2015
ROBERTS, D.W., and HAJEK, A.E., 1992. Entomopathogenic fungi as bioinsecticides. In: LEATHAM, G.F. ed Frontiers in industrial mycology, 1st ed. Boston: Springer, pp. 144-159.
RYCKAERT, B. et al. Quantitative determination of the influence of adjuvants on foliar fungicide residues. Crop Protection. 2007, 26(10), 1589-1594. https://doi.org/10.1016/j.cropro.2007.02.011
SHAH, P.A., and PELL, J.K. Entomopathogenic fungi as biological control agents. Applied microbiology and biotechnology. 2003, 61(5), 413-423. https://doi.org/10.1007/s00253-003-1240-8
SHARMA, A., SHARMA, S., and YADAV, P.K. Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food & Agriculture. 2023, 9(1), 2180857. https://doi.org/10.1080/23311932.2023.2180857
SILVA, A.P.A.P. et al. Bioformulations in pest control–a review. Annual Research & Review in Biology. 2015, 5(6), 535-543. https://doi.org/10.9734/ARRB/2015/12395
SKINNER, M., PARKER, B.L., and KIM, J.S., 2014. Role of entomopathogenic fungi in integrated pest management. In: ABROL, D.P., Ed. Integrated Pest Management: current concepts and ecological perspective. San Diego: Academic Press, pp. 169-191.
SOUZA, T. D. D. et al. Mortality of Diatraea saccharalis is affected by the pH values of the spore suspension of Beauveria bassiana and Metarhizium anisopliae. Revista Ceres. 2022, 69(4), 483-487. https://doi.org/10.1590/0034-737X202269040014
ZHANG, W. et al. The Effects of Environmental Factors and Common Pesticides on Conidia Germination Rates of Isaria fumosorosea SCAU-IFCF01. Chinese Journal of Biological Control. 2013, 29 (1), 49-55.
ZIMMERMANN, G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol science and technology. 2008, 18 (9), 865-901. https://doi.org/10.1080/09583150802471812
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sabrina Juvenal de Oliveira, Fernando Bellesini Vigna, Danrley da Roza Pacheco, Marcelo da Costa Ferreira

This work is licensed under a Creative Commons Attribution 4.0 International License.



