Remote sensing in the estimation of evapotranspiration of tomato cultivation for industrial processing

Authors

DOI:

https://doi.org/10.14393/BJ-v41n0a2025-70757

Keywords:

Center pivot, Geoprocessing, Solanum lycopersicum L. , Water management.

Abstract

This study evaluated the performance of the SAFER and METRIC algorithms to estimate the actual evapotranspiration (ETa) of irrigated tomato crops for industrial processing in the south-central region of Goiás, Brazil. The research was conducted in eight tomato-producing areas using center-pivot irrigation during the 2018 and 2019 harvests. Landsat 8 OLI/TIRS satellite images (temporal resolution of 16 days) helped estimate ETa through the SAFER e METRIC models compared with FAO methods, using the single crop coefficient (Kc) of the FAO-56/Embrapa and the soil water balance (BHS) method based on statistical indices. The analyzed algorithms presented spatiotemporal variations for ETa during the tomato crop cycle for industrial processing. The maximum evapotranspiration estimated by SAFER was 5.20 mm d-1, and by METRIC was 5.00 mm d-1. The algorithms were accurate compared with the standard methods, mainly the FAO using Embrapa’s Kc. The mean squared error was lower than 0.59 mm d-1 for SAFER and lower than 0.73 mm d-1 for METRIC. The ETa estimated by both models in the vegetative and fructification phases was lower than the mean absolute error of 0.24 mm d-1 compared with the standard methods. The SAFER model showed higher agreement with standard practices than the METRIC model, with an index between 0.64 and 0.99. This study demonstrated that algorithms may effectively estimate ETa in tomato crops for industrial processing in the analyzed region.

References

ALLEN, R.G., et al. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Process. 2011, 25, 4011-4027. https://doi.org/10.1002/hyp.8408

ALLEN R.G., et al. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and drainage paper No. 56. FAO. Rome, Italy; 1998, 300(9). Available from: http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf

ALLEN, R.G., et al. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Applications. Journal of Irrigation and Drainage Engineering. 2007, 133(4), 395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133

ALLEN R.G., et al. A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation and Drain System. 2005, 19(3-4), 251-268. https://doi.org/10.1007/s10795-005-5187-z

ALTHOFF, F., et al. Evapotranspiration for irrigated agriculture using orbital satellites. Bioscience Journal. 2019, 35(3), 670-678. https://doi.org/10.14393/BJ-v35n3a2019-41737

BASÍLIO, E.E., et al. Intervalos de irrigação no cultivo de tomateiro para processamento. Irriga. 2019, 24(4), 676-692. https://doi.org/10.15809/irriga.2019v24n4p676-692

BASTIAANSSEN, W.G.M., et al. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology. 1998, 212-213, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4

BREKSA, A.P., et al. Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods. Journal of Food Composition and Analysis. 2015, 42, 16-25. https://doi.org/10.1016/j.jfca.2015.02.011

CARDOSO, M.R.D., MARCUZZO, F.F.N. e BARROS, J.R. Classificação climática de Köppen-Geiger para o estado de Goiás e o Distrito Federal. Acta Geográfica. 2014, 8(16) 40-55. http://dx.doi.org/10.5654/acta.v8i16.1384

DIAS, S.H.B., et al. Reference evapotranspiration of Brazil modeled with machine learning techniques and remote sensing. Plos one. 2021, 16(2), e0245834. https://doi.org/10.1371/journal.pone.0245834

ELKATOURY, A., ALAZBA, A.A. e MOSSAD, A. Estimating Evapotranspiration Using Coupled Remote Sensing and Three SEB Models in an Arid Region. Environmental Processes. 2019, 7(1), 109-133. https://doi.org/10.1007/s40710-019-00410-w

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 3.ed. Brasília, Produção de Informação. 353p, 2013. Available from: https://www.embrapa.br/solos/sibcs

FILGUEIRAS, R., et al. Sensitivity of evapotranspiration estimated by orbital images under influence of surface temperature, Engenharia Agrícola. 2019, 39, 23-32. http://dx.doi.org/10.1590/1809-4430-eng.agric.v39nep23-32/2019.

FRENCH, A.N., HUNSAKER, D.J. e THORP, K.R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sensing of Environment. 2015, 158, 281-294. https://doi.org/10.1016/j.rse.2014.11.003

HERNANDEZ, F.B.T., et al. Determining large scale actual evapotranspiration using agrometeorological and remote sensing data in the Northwest of Sao Paulo State, Brazil. Acta Horticulturae. 2014, 1038, 263-270. https://doi.org/10.17660/ActaHortic.2014.1038.31

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. Levantamento Sistemático da Produção Agrícola, 2019. Available from: https://biblioteca.ibge.gov.br/visualizacao/periodicos/2415/epag_2019_jan.pdf

JAAFAR, H.H. e AHMAD, F.A. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sensing of Environment. 2020, 238, 111034. https://doi.org/10.1016/j.rse.2018.12.033

KHAND, K., KJAERSGAARD, J., HAY, C. e JIA, X. Estimating Impacts of Agricultural Subsurface Drainage on Evapotranspiration Using the Landsat Imagery - Based METRIC Model. Hydrology. 2017, 4(4), 29. https://doi.org/10.3390/hydrology4040049

KHAND, K., et al. Dry Season Evapotranspiration Dynamics over Human-Impacted Landscapes in the Southern Amazon Using the Landsat-Based METRIC Model. Remote Sensing. 2017, 9(7), 706. https://doi.org/10.3390/rs9070706

KOTTEK, M., et al. World Map of the Köppen-Ginger climate classification update. Meteorologische Zeitschrift. 2006, 15(3), 259-263. https://doi.org/10.1127/0941-2948/2006/0130

LIBARDI, P.L. Dinâmica da água no solo. 2. ed. São Paulo: Universidade de São Paulo; 352 p, 2012.

LIU, R., et al. Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau. Hydrology and Earth System Sciences. 2010, 14(1), 47-58. https://doi.org/10.5194/hess-14-47-2010

MAROUELLI, W.A., SILVA, H.R. e SILVA, W.L.C. Irrigação do tomateiro para processamento. Brasília: Embrapa Hortaliças, Circular técnica 102, p. 24, 2012. Available from: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/925502/1/1113CT102Prova20120312.pdf

MAROUELLI, W.A. e SILVA, W.L.C. Irrigação por gotejamento do tomateiro industrial durante o estádio de frutificação, na região do cerrado. Horticultura Brasileira. 2006, 24(3), 342-346. https://doi.org/10.1590/S0102-05362006000300014

MUSSI, R.F.M., et al. Evapotranspiração da cana-de-açúcar estimada pelo algoritmo SAFER. Irriga. 2020, 25(2), 263-278. https://doi.org/10.15809/irriga.2020v25n2p263-278

NORMAN, J.M. e BECKER, F. Terminology in thermal infrared remote sensing of natural surfaces. Agricultural and Forest Meteorology. 1995, 77(3-4), 153-166. https://doi.org/10.1016/0168-1923(95)02259-Z

OLIVEIRA, B.S., et al. Improved Albedo Estimates Implemented in the METRIC Model for Modeling Energy Balance Fluxes and Evapotranspiration over Agricultural and Natural Areas in the Brazilian Cerrado. Remote Sensing. 2018, 10(8), 1181. https://doi.org/10.3390/rs10081181

PETROPOULOS, G.P., et al. Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability. 2018, 10(1), 181. https://doi.org/10.3390/su10010181

PIRES, G.F., et al. Increased climate risk in Brazilian double cropping agriculture systems: implications for land use in Northern Brazil. Agricultural and Forest Meteorology. 2016, 228, 286-298. https://doi.org/10.1016/j.agrformet.2016.07.005

POÇAS, I., et al. Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems engineering. 2014, 128, 69-81. https://doi.org/10.1016/j.biosystemseng.2014.06.019

REYES-GONZÁLEZ, A., et al. Comparison of Leaf Area Index, Surface Temperature, and Actual Evapotranspiration Estimated Using the METRIC Model and In Situ Measurements. Sensors. 2019, 19(8), 1857. https://doi.org/10.3390/s19081857

SACCON, P. Water for agriculture, irrigation management. Applied Soil Ecology. 2018, 123, 793-796. https://doi.org/10.1016/j.apsoil.2017.10.037

SALES, D.L.A., et al. Estimativa de evapotranspiração e coeficiente de cultura do tomateiro industrial utilizando o algoritmo SAFER. Irriga. 2017, 22(3), 629-640. https://doi.org/10.15809/irriga.2017v22n3p629-640

SALES, D.L.A., et al. Common bean evapotranspiration estimated by orbital images. African Journal of Agricultural Research. 2016, 11, 867-872. https://doi.org/10.5897/AJAR2015.10500

SANTOS, R.A., et al. Remote sensing as a tool to determine biophysical parameters of irrigated seed corn crop. Semina: Ciências Agrárias. 2020, 41(2), 435-446. http://dx.doi.org/10.33/1679-0359.2020v41n2p435

SENA, C.R.S., et al. Calibração do sensor capacitivo de umidade do solo EC-5 em resposta a granulometria do solo. Brazilian Journal of Development. 2020, 6(4), 17228-17240. https://doi.org/10.34117/bjdv6n4-043

SENAY, G.B., et al. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sensing of Environment. 2016, 185(3), 171-185. https://doi.org/10.1016/j.rse.2015.12.043

SINGH, A. Assessment of different strategies for managing the water resources problems of irrigated agriculture, Agricultural Water Management. 2018, 208, 187-192. https://doi.org/10.1016/j.agwat.2018.06.021

SINGH, A. Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview. Agricultural Water Management. 2016, 174, 2-10. https://doi.org/10.1016/j.agwat.2016.04.021

SOUZA, J.M.F., et al. Validação do modelo SAFER na estimativa da evapotranspiração da cana-de-açúcar. Irriga. 2020, 25(2), 247-262. https://doi.org/10.15809/irriga.2020v25n2p247-262

TEIXEIRA, A.H.C., et al. Modelagem espaço temporal dos componentes dos balanços de energia e de água no Semiárido brasileiro. Embrapa Monitoramento por Satélite Campinas, SP. Documentos, 99, 2013. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/93401/1/Bassoi-2013.pdf

TEIXEIRA, A.H.C., et al. Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region. Journal of Applied Remote Sensing. 2017, 11(1), 016030. https://doi.org/10.1117/1.JRS.11.016030

TEIXEIRA, A.H.C. Determining regional actual evapotranspiration of irrigated and natural vegetation in the São Francisco river basin (Brazil) using remote sensing an Penman-Monteith equation. Remote Sensing. 2010, 2(5), 1287-1319. https://doi.org/10.3390/rs0251287

TEIXEIRA, A.H.C. Modelling Evapotranspiration by Remote Sensing Parameters and Agrometeorological Stations. In. Remote Sensing and Hydrology, Neale, CMU, Cosh, MH. Eds., IAHS Publ. 352, IAHS Press: Wallingford, UK, p. 154-157, 2012. Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/946352/1/Heriberto.pdf

UNITED STATES GEOLOGICAL SURVEY - USGS. Landsat Project Description, 2020. Available from: http://landsat.usgs.gov/about_project_descriptions.php

VENANCIO, L.P., et al. Mapping within-field variability of soybean evapotranspiration and crop coefficient using the Earth Engine Evaporation Flux (EEFlux) application. Plos one. 2020, 15(7), e0235620. https://doi.org/10.1371/journal.pone.0235620

VENANCIO, L.P., et al. Evapotranspiration mapping of commercial corn fields in Brazil using SAFER algorithm. Science Agriculture. 2021, 78(4), e20190261. https://doi.org/10.1590/1678-992x-2019-0261

WAGLE, P. e GOWDA, P.H. Editorial for the Special Issue "Remote Sensing of Evapotranspiration (ET)". Remote Sensing. 2019, 11(18), 2146. https://doi.org/10.3390/rs11182146

WARREEN, M.S., et al. Utilização do sensoriamento remoto termal na gestão de recursos hídricos. Revista brasileira de Geografia Física. 2014, 7(1): 65-82. Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/984718/1/3815.pdf

WILLMOTT, C.J., et al. Statistics for the evaluation and comparison of models. Journal of Geophysics Research. 1985, 90, 8995-9005. https://doi.org/10.1029/JC090iC05p08995

WORLD PROCESSING TOMATO COUNCIL - WPTC. World production estimate of tomatoes for processing (in 1000 metric tonnes). Banco de dados, 2020. Available from: http://www.wptc.to/pdf/releases/WPTC%20World%20Production%20estimate%20as%20of%2027%20October%202016.pdf

XUE, J., et al. Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agricultural Water Management. 2020, 238, 106228. https://doi.org/10.1016/j.agwat.2020.106228

ZHANG, X., et al. The Potential Use of Multi-Band SAR Data for Soil Moisture Retrieval over Bare Agricultural Areas: Hebei, China. Remote Sensing. 2016, 8(1), 7. https://doi.org/10.3390/rs8010007

Downloads

Published

2025-02-12

Issue

Section

Agricultural Sciences

How to Cite

Remote sensing in the estimation of evapotranspiration of tomato cultivation for industrial processing. Bioscience Journal [online], 2025. [online], vol. 41, pp. e41002. [Accessed15 March 2025]. DOI 10.14393/BJ-v41n0a2025-70757. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/70757.