Remote sensing in the estimation of evapotranspiration of tomato cultivation for industrial processing
DOI:
https://doi.org/10.14393/BJ-v41n0a2025-70757Keywords:
Center pivot, Geoprocessing, Solanum lycopersicum L. , Water management.Abstract
This study evaluated the performance of the SAFER and METRIC algorithms to estimate the actual evapotranspiration (ETa) of irrigated tomato crops for industrial processing in the south-central region of Goiás, Brazil. The research was conducted in eight tomato-producing areas using center-pivot irrigation during the 2018 and 2019 harvests. Landsat 8 OLI/TIRS satellite images (temporal resolution of 16 days) helped estimate ETa through the SAFER e METRIC models compared with FAO methods, using the single crop coefficient (Kc) of the FAO-56/Embrapa and the soil water balance (BHS) method based on statistical indices. The analyzed algorithms presented spatiotemporal variations for ETa during the tomato crop cycle for industrial processing. The maximum evapotranspiration estimated by SAFER was 5.20 mm d-1, and by METRIC was 5.00 mm d-1. The algorithms were accurate compared with the standard methods, mainly the FAO using Embrapa’s Kc. The mean squared error was lower than 0.59 mm d-1 for SAFER and lower than 0.73 mm d-1 for METRIC. The ETa estimated by both models in the vegetative and fructification phases was lower than the mean absolute error of 0.24 mm d-1 compared with the standard methods. The SAFER model showed higher agreement with standard practices than the METRIC model, with an index between 0.64 and 0.99. This study demonstrated that algorithms may effectively estimate ETa in tomato crops for industrial processing in the analyzed region.
References
ALLEN, R.G., et al. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Process. 2011, 25, 4011-4027. https://doi.org/10.1002/hyp.8408
ALLEN R.G., et al. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and drainage paper No. 56. FAO. Rome, Italy; 1998, 300(9). Available from: http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf
ALLEN, R.G., et al. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Applications. Journal of Irrigation and Drainage Engineering. 2007, 133(4), 395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133
ALLEN R.G., et al. A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation and Drain System. 2005, 19(3-4), 251-268. https://doi.org/10.1007/s10795-005-5187-z
ALTHOFF, F., et al. Evapotranspiration for irrigated agriculture using orbital satellites. Bioscience Journal. 2019, 35(3), 670-678. https://doi.org/10.14393/BJ-v35n3a2019-41737
BASÍLIO, E.E., et al. Intervalos de irrigação no cultivo de tomateiro para processamento. Irriga. 2019, 24(4), 676-692. https://doi.org/10.15809/irriga.2019v24n4p676-692
BASTIAANSSEN, W.G.M., et al. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology. 1998, 212-213, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
BREKSA, A.P., et al. Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods. Journal of Food Composition and Analysis. 2015, 42, 16-25. https://doi.org/10.1016/j.jfca.2015.02.011
CARDOSO, M.R.D., MARCUZZO, F.F.N. e BARROS, J.R. Classificação climática de Köppen-Geiger para o estado de Goiás e o Distrito Federal. Acta Geográfica. 2014, 8(16) 40-55. http://dx.doi.org/10.5654/acta.v8i16.1384
DIAS, S.H.B., et al. Reference evapotranspiration of Brazil modeled with machine learning techniques and remote sensing. Plos one. 2021, 16(2), e0245834. https://doi.org/10.1371/journal.pone.0245834
ELKATOURY, A., ALAZBA, A.A. e MOSSAD, A. Estimating Evapotranspiration Using Coupled Remote Sensing and Three SEB Models in an Arid Region. Environmental Processes. 2019, 7(1), 109-133. https://doi.org/10.1007/s40710-019-00410-w
EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 3.ed. Brasília, Produção de Informação. 353p, 2013. Available from: https://www.embrapa.br/solos/sibcs
FILGUEIRAS, R., et al. Sensitivity of evapotranspiration estimated by orbital images under influence of surface temperature, Engenharia Agrícola. 2019, 39, 23-32. http://dx.doi.org/10.1590/1809-4430-eng.agric.v39nep23-32/2019.
FRENCH, A.N., HUNSAKER, D.J. e THORP, K.R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sensing of Environment. 2015, 158, 281-294. https://doi.org/10.1016/j.rse.2014.11.003
HERNANDEZ, F.B.T., et al. Determining large scale actual evapotranspiration using agrometeorological and remote sensing data in the Northwest of Sao Paulo State, Brazil. Acta Horticulturae. 2014, 1038, 263-270. https://doi.org/10.17660/ActaHortic.2014.1038.31
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. Levantamento Sistemático da Produção Agrícola, 2019. Available from: https://biblioteca.ibge.gov.br/visualizacao/periodicos/2415/epag_2019_jan.pdf
JAAFAR, H.H. e AHMAD, F.A. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sensing of Environment. 2020, 238, 111034. https://doi.org/10.1016/j.rse.2018.12.033
KHAND, K., KJAERSGAARD, J., HAY, C. e JIA, X. Estimating Impacts of Agricultural Subsurface Drainage on Evapotranspiration Using the Landsat Imagery - Based METRIC Model. Hydrology. 2017, 4(4), 29. https://doi.org/10.3390/hydrology4040049
KHAND, K., et al. Dry Season Evapotranspiration Dynamics over Human-Impacted Landscapes in the Southern Amazon Using the Landsat-Based METRIC Model. Remote Sensing. 2017, 9(7), 706. https://doi.org/10.3390/rs9070706
KOTTEK, M., et al. World Map of the Köppen-Ginger climate classification update. Meteorologische Zeitschrift. 2006, 15(3), 259-263. https://doi.org/10.1127/0941-2948/2006/0130
LIBARDI, P.L. Dinâmica da água no solo. 2. ed. São Paulo: Universidade de São Paulo; 352 p, 2012.
LIU, R., et al. Actual daily evapotranspiration estimated from MERIS and AATSR data over the Chinese Loess Plateau. Hydrology and Earth System Sciences. 2010, 14(1), 47-58. https://doi.org/10.5194/hess-14-47-2010
MAROUELLI, W.A., SILVA, H.R. e SILVA, W.L.C. Irrigação do tomateiro para processamento. Brasília: Embrapa Hortaliças, Circular técnica 102, p. 24, 2012. Available from: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/925502/1/1113CT102Prova20120312.pdf
MAROUELLI, W.A. e SILVA, W.L.C. Irrigação por gotejamento do tomateiro industrial durante o estádio de frutificação, na região do cerrado. Horticultura Brasileira. 2006, 24(3), 342-346. https://doi.org/10.1590/S0102-05362006000300014
MUSSI, R.F.M., et al. Evapotranspiração da cana-de-açúcar estimada pelo algoritmo SAFER. Irriga. 2020, 25(2), 263-278. https://doi.org/10.15809/irriga.2020v25n2p263-278
NORMAN, J.M. e BECKER, F. Terminology in thermal infrared remote sensing of natural surfaces. Agricultural and Forest Meteorology. 1995, 77(3-4), 153-166. https://doi.org/10.1016/0168-1923(95)02259-Z
OLIVEIRA, B.S., et al. Improved Albedo Estimates Implemented in the METRIC Model for Modeling Energy Balance Fluxes and Evapotranspiration over Agricultural and Natural Areas in the Brazilian Cerrado. Remote Sensing. 2018, 10(8), 1181. https://doi.org/10.3390/rs10081181
PETROPOULOS, G.P., et al. Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability. 2018, 10(1), 181. https://doi.org/10.3390/su10010181
PIRES, G.F., et al. Increased climate risk in Brazilian double cropping agriculture systems: implications for land use in Northern Brazil. Agricultural and Forest Meteorology. 2016, 228, 286-298. https://doi.org/10.1016/j.agrformet.2016.07.005
POÇAS, I., et al. Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems engineering. 2014, 128, 69-81. https://doi.org/10.1016/j.biosystemseng.2014.06.019
REYES-GONZÁLEZ, A., et al. Comparison of Leaf Area Index, Surface Temperature, and Actual Evapotranspiration Estimated Using the METRIC Model and In Situ Measurements. Sensors. 2019, 19(8), 1857. https://doi.org/10.3390/s19081857
SACCON, P. Water for agriculture, irrigation management. Applied Soil Ecology. 2018, 123, 793-796. https://doi.org/10.1016/j.apsoil.2017.10.037
SALES, D.L.A., et al. Estimativa de evapotranspiração e coeficiente de cultura do tomateiro industrial utilizando o algoritmo SAFER. Irriga. 2017, 22(3), 629-640. https://doi.org/10.15809/irriga.2017v22n3p629-640
SALES, D.L.A., et al. Common bean evapotranspiration estimated by orbital images. African Journal of Agricultural Research. 2016, 11, 867-872. https://doi.org/10.5897/AJAR2015.10500
SANTOS, R.A., et al. Remote sensing as a tool to determine biophysical parameters of irrigated seed corn crop. Semina: Ciências Agrárias. 2020, 41(2), 435-446. http://dx.doi.org/10.33/1679-0359.2020v41n2p435
SENA, C.R.S., et al. Calibração do sensor capacitivo de umidade do solo EC-5 em resposta a granulometria do solo. Brazilian Journal of Development. 2020, 6(4), 17228-17240. https://doi.org/10.34117/bjdv6n4-043
SENAY, G.B., et al. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sensing of Environment. 2016, 185(3), 171-185. https://doi.org/10.1016/j.rse.2015.12.043
SINGH, A. Assessment of different strategies for managing the water resources problems of irrigated agriculture, Agricultural Water Management. 2018, 208, 187-192. https://doi.org/10.1016/j.agwat.2018.06.021
SINGH, A. Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview. Agricultural Water Management. 2016, 174, 2-10. https://doi.org/10.1016/j.agwat.2016.04.021
SOUZA, J.M.F., et al. Validação do modelo SAFER na estimativa da evapotranspiração da cana-de-açúcar. Irriga. 2020, 25(2), 247-262. https://doi.org/10.15809/irriga.2020v25n2p247-262
TEIXEIRA, A.H.C., et al. Modelagem espaço temporal dos componentes dos balanços de energia e de água no Semiárido brasileiro. Embrapa Monitoramento por Satélite Campinas, SP. Documentos, 99, 2013. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/93401/1/Bassoi-2013.pdf
TEIXEIRA, A.H.C., et al. Large-scale radiation and energy balances with Landsat 8 images and agrometeorological data in the Brazilian semiarid region. Journal of Applied Remote Sensing. 2017, 11(1), 016030. https://doi.org/10.1117/1.JRS.11.016030
TEIXEIRA, A.H.C. Determining regional actual evapotranspiration of irrigated and natural vegetation in the São Francisco river basin (Brazil) using remote sensing an Penman-Monteith equation. Remote Sensing. 2010, 2(5), 1287-1319. https://doi.org/10.3390/rs0251287
TEIXEIRA, A.H.C. Modelling Evapotranspiration by Remote Sensing Parameters and Agrometeorological Stations. In. Remote Sensing and Hydrology, Neale, CMU, Cosh, MH. Eds., IAHS Publ. 352, IAHS Press: Wallingford, UK, p. 154-157, 2012. Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/946352/1/Heriberto.pdf
UNITED STATES GEOLOGICAL SURVEY - USGS. Landsat Project Description, 2020. Available from: http://landsat.usgs.gov/about_project_descriptions.php
VENANCIO, L.P., et al. Mapping within-field variability of soybean evapotranspiration and crop coefficient using the Earth Engine Evaporation Flux (EEFlux) application. Plos one. 2020, 15(7), e0235620. https://doi.org/10.1371/journal.pone.0235620
VENANCIO, L.P., et al. Evapotranspiration mapping of commercial corn fields in Brazil using SAFER algorithm. Science Agriculture. 2021, 78(4), e20190261. https://doi.org/10.1590/1678-992x-2019-0261
WAGLE, P. e GOWDA, P.H. Editorial for the Special Issue "Remote Sensing of Evapotranspiration (ET)". Remote Sensing. 2019, 11(18), 2146. https://doi.org/10.3390/rs11182146
WARREEN, M.S., et al. Utilização do sensoriamento remoto termal na gestão de recursos hídricos. Revista brasileira de Geografia Física. 2014, 7(1): 65-82. Available from: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/984718/1/3815.pdf
WILLMOTT, C.J., et al. Statistics for the evaluation and comparison of models. Journal of Geophysics Research. 1985, 90, 8995-9005. https://doi.org/10.1029/JC090iC05p08995
WORLD PROCESSING TOMATO COUNCIL - WPTC. World production estimate of tomatoes for processing (in 1000 metric tonnes). Banco de dados, 2020. Available from: http://www.wptc.to/pdf/releases/WPTC%20World%20Production%20estimate%20as%20of%2027%20October%202016.pdf
XUE, J., et al. Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agricultural Water Management. 2020, 238, 106228. https://doi.org/10.1016/j.agwat.2020.106228
ZHANG, X., et al. The Potential Use of Multi-Band SAR Data for Soil Moisture Retrieval over Bare Agricultural Areas: Hebei, China. Remote Sensing. 2016, 8(1), 7. https://doi.org/10.3390/rs8010007
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Carolina Carvalho Rocha Sena, José Alves Júnior, João Mauricio Fernandes Souza, Adão Wagner Pego Evangelista, Rafael Battisti, Derblai Casaroli, Elson de Jesus Antunes Junior

This work is licensed under a Creative Commons Attribution 4.0 International License.