Multifunctional microorganisms and phosphorus dosages in soybean-maize and soybean-rice successions under no-till systems in the cerrado

Authors

DOI:

https://doi.org/10.14393/BJ-v40n0a2024-70492

Keywords:

Bacteria, Co-inoculation, Glycine max, Oryza sativa, Solubilization, Zea mays.

Abstract

Multifunctional phosphate solubilizing microorganisms can contribute to reducing phosphorus doses without affecting the grain yield of crops. The aim of this work was to evaluate agricultural production systems involving soybean-maize and soybean-rice successions, inoculation of beneficial microorganisms and application of phosphorus doses with a view to sustainable intensification of agriculture and soil health and fertility in the Cerrados region. The experimental design was a randomized block design in a 2x4 factorial scheme with four replications. The treatments were composed of the combination of two phosphorus doses, 50% (45 kg ha-1 of P2O5) and 100% (90 kg ha-1 of P2O5) of the recommended dose with four uses of multifunctional microorganisms: 1. BRM 32111 (Burkholderia sp.), 2. BRM 32114 (Serratia marcescens), 3. co-inoculation (BRM 32111 + BRM 32114), and 4. control (no application of microorganisms). The microorganisms provided significant increases in the 100-grain weight and grain yield of soybeans, dry matter and nutrient accumulation of rice and maize, reduction of phytopathogenic fungus propagules, and increased accumulation of nutrients and activity of the enzymes Betaglicosidase and Arilsulfatase in the soil. Applying 50% phosphorus reduced the 100-grain weight and grain yield of soybean, dry matter and nutrient accumulation of rice, propagules of Trichoderma spp., and the nutrients in the soil. The soybean-maize succession showed higher levels of Arylsulfatase than the soybean-rice succession. The highest soybean yields were obtained by applying BRM 32114 with 50% and co-inoculation with 100% phosphorus.

Downloads

Download data is not yet available.

References

ABREO, E. et al. Control of damping-off in tomato seedlings exerted by Serratia spp. strains and identification of inhibitory bacterial volatiles in vitro. Systematic And Applied Microbiology. 2021, 44(2), e126177. https://doi.org/10.1016/j.syapm.2020.126177

AHMAD, T. et al. Burkholderia gladioli E39CS3, um endófito de Crocus sativus Linn., induz resistência do hospedeiro contra a podridão do cormo causada por Fusarium oxysporum. Journal Of Applied Microbiology. 2021, 132(1), 495-508. https://doi.org/10.1111/jam.15190

ARAÚJO, F. D. S et al. Potential of Burkholderia seminalis TC3.4.2R3 as Biocontrol Agent Against Fusarium oxysporum Evaluated by Mass Spectrometry Imaging. Journal Of The American Society For Mass Spectrometry. 2017, 28(5), 901-907. https://doi.org/10.1007/s13361-017-1610-6

AWAIS, M. et al. Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatalysis And Agricultural Biotechnology. 2017, 11, 312-321. https://doi.org/10.1016/j.bcab.2017.07.018

BALIAH, N. T. et al. Isolation, identification ans characterization of phosphate solubilizing bacteria from different crop soils of Srivilliputtur Taluk, Virudhunagar District, Tamil Nadu. Tropical Ecology. 2016, 57(3), 465-474.

BANERJEE, S. et al. Biocontrol potential of Pseudomonas azotoformans, Serratia marcescens and Trichoderma virens against Fusarium wilt of Dalbergia sissoo. Forest Pathology. 2020, 50(2), e12581. https://doi.org/10.1111/efp.12581

BOLFE, E. L.; SANO, E. E.; CAMPOS, S. K. Dinâmica agrícola no Cerrado: Análises e projeções. 312f. Brasília, DF: Embrapa, v.1, 2020.

BOLO, P. et al. Application of residue, inorganic fertilizer and lime affect phosphorus solubilizing microorganisms and microbial biomass under different tillage and cropping systems in a Ferralsol. Geoderma. 2021, 390, e114962. https://doi.org/10.1016/j.geoderma.2021.114962

BONONI, L., CHIARAMONTE, J. B., PANSA, C. C., MOITINHO, M. A., MELO, I. S. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 2020, 10, 1-13. https://doi.org/10.1038/s41598-020-59793-8

CHIBEBA, A. M. et al. Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. American Journal of Plant Sciences. 2015, 6(10), 1641-1649. http://dx.doi.org/10.4236/ajps.2015.610164

CLAESSEN, M. E. C. Manual for methods of soil analysis. 2 ed., Embrapa Solos, Rio de Janeiro. 1997.

CRUZ, D. R. C. et al. Use of multifunctional microorganisms in corn crop. Revista Caatinga. 2023, 36(2), 349-361. https://doi.org/10.1590/1983-21252023v36n212rc

ELSHAFIE, H. et al. In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi. International Journal Of Molecular Sciences. 2012, 13(12), 16291-16302. https://doi.org/10.3390/ijms131216291

FERNANDES, J. P. T. et al. Physio-agronomic characterization of upland rice inoculated with mix of multifunctional microorganisms. Revista Caatinga. 2020, 33(3), 679-689. https://doi.org/10.1590/1983-21252020v33n311rc

FIDELIS, R. R. et al. Eficiência no uso e resposta de cultivares de arroz à aplicação de fósforo em solos de terras altas. Agrarian. 2014, 8(29), 225–234.

FRANÇA NETO, J. B. et al. Tecnologia da produção de semente de soja de alta qualidade. Embrapa: Londrina, Brasil, 2016.

FRASCA, L. L. M. et al. Consortium of multifunctional microorganisms in soybean culture. Colloquim Agrariae. 2023, 18(4), 61-67. https://doi.org/10.5747/ca.2022.v18.n4.a508

FRASCA, L. L. M. et al. Use of multifunctional microorganisms in the main cultures of the Cerrado. Responsabilidade social, produção e meio ambiente nas ciências agrárias. Ponta Grossa: Editora Atena, 2021.

HEO, A. Y.; KOO, Y. M.; CHOI, H. W. Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. Biology. 2022, 11(4), e619. https://doi.org/10.3390%2Fbiology11040619

HOSONO, A. and CARUSO, L. Agricultural Transformation in the Brazilian Cerrado: A Model of Development and Prosperity, 2016. Disponível em: https://www.csis.org/events/agricultural-transformation-brazilian-cerrado-model-development-and-prosperity

HUANG, Y. et al. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays. Soil Biology And Biochemistry. 2021, 163, e108465. https://doi.org/10.1016/j.soilbio.2021.108465

JAROSCH, K. A. et al. Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability?. Soil Biology And Biochemistry. 2019, 139, e107628. https://doi.org/10.1016/j.soilbio.2019.107628

KALAYU, G. Phosphate Solubilizing Microorganisms: promising approach as biofertilizers. International Journal Of Agronomy. 2019, 2019(1), 1-7. https://doi.org/10.1155/2019/4917256

KOMADA, H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Journal of Plant Protection Research. 1975, 8, 114-125.

KOUR, D. et al. Potassium solubilizing and mobilizing microbes: biodiversity, mechanisms of solubilization, and biotechnological implication for alleviations of abiotic stress. In: RASTEGARI, A. A.; YADAV, A. N.; YADAV, N. (Eds.). New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier, 2020. p. 177-202.

KSHETRI, L.; NASSEM, F.; PANDEY, P. Role of Serratia sp. as Biocontrol Agent and Plant Growth Stimulator, with Prospects of Biotic Stress Management in Plant. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. 2019, 13, 169-200. http://dx.doi.org/10.1007/978-981-13-6986-5_6

MARTIN, J. P. Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Science. 1950, 69(3), 222.

MENDES, I. C. et al. Saúde do solo, tecnologia BioAS e a sustentabilidade agrícola. In: Bioinsumos na cultura da soja. MEYER, M. C. [et al.]. Brasília, DF: Embrapa, 2022. p. 249-262.

MENDES, I. C. et al. Bioanálise de solo: aspectos teóricos e práticos. Tópicos em Ciência do Solo. 2019, 10, 399-462.

MENDES, I. C. et al. Qualidade biológica do solo: por que e como avaliar. Boletim de Pesquisa da Fundação MT, 2017, 1, 98-105.

NAPOLEÃO, R. et al. Intensidade do mofo-branco do feijoeiro em plantio convencional e direto sob diferentes lâminas d'água. Fitopatologia Brasileira. 2005, 30(4), 374-379. https://doi.org/10.1590/S0100-41582005000400006

NASCENTE, A. S. et al. Effects of beneficial microorganisms on lowland rice development. Environmental Science and Pollution Research. 2017a, 24(32), 25233-25242. https://doi.org/10.1007/s11356-017-0212-y

NASCENTE, A. S. et al. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research. 2017b, 24(32), 2956-2965. https://doi.org/10.1007/s11356-016-8013-2

NASCENTE, A.S. et al. The no-tillage system and cover crops? Alternatives to increase upland rice yields. European Journal of Agronomy, 2013. 45, 124-131. https://doi.org/10.1016/j.eja.2012.09.004

NASH, S.M. and SNYDER, W.C. Quantitative estimations by plate counts of propagules of the beans root rot Fusarium in field soil. Phytopa. 1962, 56(6), 567-572.

OLIVEIRA-PAIVA, C. A. et al. Microrganismos solubilizadores de fósforo e potássio na cultura da soja. In: Bioinsumos na cultura da soja. MEYER, M. C. [et al.]. Brasília, DF: Embrapa, 2022. p. 163-180.

PARRA, J. S. et al. Phosphorus adsorption prediction through Decision Tree Algorithm under different topographic conditions in sugarcane fields. Catena. 2022, 213, e106114. https://doi.org/10.1016/j.catena.2022.106114

SILVA, M. A. et al. Screening of Beneficial Microorganisms to Improve Soybean Growth and Yield. Brazilian Archives Of Biology And Technology. 2020, 63, e20190463. https://doi.org/10.1590/1678-4324-2020190463

SOUSA, D. M. G. and LOBATO, E. Cerrado: correção do solo e adubação. 4th ed. Planaltina: Embrapa Cerrados, 2004.

SPERANDIO, E. M. et al. Evaluation of rhizobacteria in upland rice in Brazil: growth promotionand interaction of induced defense responses against leaf blast (Magnaporthe oryzae). ActaPhysiol Plant. 2017, 39(12), 259-269. https://doi.org/10.1007/s11738-017-2547-x

TABATABAI, M. A. and BREMNER, J. M.. Arylsulfatase Activity of Soils. Soil Science Society Of America Journal, 1970, 34(2), 225-229.

TABATABAI, M.A. Soil enzymes. In: WEAVER, R.W.; ANGLE, J.S.; BOTTOMLEY, P.S. Methods of soil analysis: microbiological and biochemical properties. Madison: Soil Science Society of America, 1994. p.775-883.

TEIXEIRA, M. B. et al. Decomposição e liberação de nutrientes da parte aérea de plantas de milheto e sorgo. Revista Brasileira de Ciências do Solo. 2011, 35(3), 867-876. https://doi.org/10.1590/S0100-06832011000300021

XU, Z. et al. Isolation of Burkholderia sp. HQB-1, A Promising Biocontrol Bacteria to Protect Banana Against Fusarium Wilt Through Phenazine-1-Carboxylic Acid Secretion. Frontiers In Microbiology. 2020, 11, 1-12. https://doi.org/10.3389/fmicb.2020.605152

ZAMAN, N. R. et al. Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. Plos One. 2021, 16(9), e0257863. https://doi.org/10.1371/journal.pone.0257863

Downloads

Published

2024-07-17

How to Cite

CRUZ, D.R.C., MONTEIRO, N.O. da C., FERREIRA, I.V.L., SOUZA, V.G.M., NETO, J.B., SILVA, M.A. and NASCENTE, A.S., 2024. Multifunctional microorganisms and phosphorus dosages in soybean-maize and soybean-rice successions under no-till systems in the cerrado. Bioscience Journal [online], vol. 40, pp. e40032. [Accessed30 December 2024]. DOI 10.14393/BJ-v40n0a2024-70492. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/70492.

Issue

Section

Agricultural Sciences