Growth-promoting microorganisms in the development of orchid seedlings of Phalaenopsis, Cymbidium, and Dendrobium genera
DOI:
https://doi.org/10.14393/BJ-v39n0a2023-66721Keywords:
Azospirillum brasilense, Bacillus pumilus, Bacillus subtilis, Orchidaceae, Trichoderma sp.Abstract
The demand for sustainable agricultural production systems is increasing, and using growth-promoting microorganisms in plants has stood out because it decreases or even replaces chemical fertilizer use, reducing production costs. This study aimed to evaluate the response of some microorganisms applied to the seedlings of primary orchids cultivated in Brazil (Phalaenopsis sp. 'Taisuco Swan', Cymbidium atropurpureum, and Dendrobium secundum). The experimental design was completely randomized. There were seven treatments (absence of microorganisms – control, Trichoderma sp. in sodium alginate, Trichoderma sp. in clay, Trichoderma sp. in sodium alginate and clay, Trichoderma sp. in a liquid medium, Azospirillum brasilense + Bacillus subtilis in a liquid medium, and Bacillus pumilus in a liquid medium), four replications, and three plants per plot. The seedlings were grown in a greenhouse and evaluated 190 days after microorganism inoculation. The evaluation of morpho-physiological characteristics differed according to the particularities of each genus. The Bacillus pumilus and Azospirillum brasilense + Bacillus subtilis rhizobacteria in a liquid medium for Phalaenopsis sp. 'Taisuco Swan' and the Trichoderma sp. fungus in a liquid medium for Cymbidium atropurpureum increased seedling growth and development. Azospirillum brasilense + Bacillus subtilis in a liquid medium for the Dendrobium secundum orchid promoted more root biomass. Using beneficial microorganisms in orchid cultivation is promising, and seedling growth and development depend on their inoculation and the morpho-physiological characteristics of each plant.
Downloads
References
ADEBAYO, A.J.G., et al. Effects of Trichoderma longibrachiatum (ngj167) and compost on early growth of Bougainvillea spectabilis. Ornamental Horticulture. 2020, 26(4), 614-620. https://doi.org/10.1590/2447-536x.v26i4.2097
ALMANÇA, M.A.K., et al. Uso do Trichoderma na cultura da uva. In: MEYER, M.C., MAZARO, S.M. and SILVA, J.C. Trichoderma, uso na agricultura. p. 507-520, 2019.
ANDRADE, F.M., et al. Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiol. Res. 2019, 223, 120-128. https://doi.org/10.1016/j.micres.2019.04.005
BARBOSA, J.C. and MALDONADO JUNIOR, W. AgroEstat: sistema para análises estatísticas de ensaios agronômicos. Jaboticabal, FCAV/UNESP: Funep, 2015.
BARRY, A.L. and THORNSBERRY, C. Susceptibility tests: Diffusion Test Procedures. In: BALOWS, A., HAUSER, W.J. and HERMANN, K. L. et al. Manual of clinical microbiology. 5th ed. Washington, DC: American Society for Microbiology, 1991.
BEZERRA, G.A., et al. In vitro culture and greenhouse acclimatization of Oncidium varicosum (Orchidaceae) with microorganisms isolated from its roots. Ornamental Horticulture. 2019, 25(4), 407-416. https://doi.org/10.1590/2447-536x.v25i4.2046
BLAKE, C., CHRISTENSEN, M.N. and KOVÁCS, Á.T. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions. 2021, 34(1), 15-25. https://doi.org/10.1094/MPMI-08-20-0225-CR
BRAGA JUNIOR, G.M., et al. Efficiency of inoculation by Bacillus subtilis on soybean biomass and productivity. Revista Brasileira de Ciências Agrárias. 2018, 13, 1-6. https://doi.org/10.5039/agraria.v13i4a5571
BUBANZ, H.C.S. Potencial de rizobactérias para a promoção de crescimento vegetal. 2018. Available from: https://rd.uffs.edu.br/bitstream/prefix/2367/1/BUBANZ.pdf
CARNEIRO, R.M.D.G. and GOMES, C.B. Encapsulação do fungo Paecilomyces lilacinus em matrizes de alginato-argila e avaliação da viabilidade dos conídios em duas temperaturas. Nematologia brasileira. 1997, 21(2), 85-92.
CHITNIS, V.R., et al. Fungal Endophyte-Mediated Crop Improvement: The Way Ahead. Frontiers in Plant Science. 2020, 11, 561007. https://doi.org/10.3389/fpls.2020.561007
COELHO, S.P., et al. Azospirillum brasilense increases corn growth and yield in conventional low input cropping systems. Renewable Agriculture and Food Systems. 2021, 36(3), 225-233. https://doi.org/10.1017/S1742170520000241
COSTA, L.C., et al. Desenvolvimento de cultivares de soja após inoculação de estirpes de Bacillus subtilis. Nativa. 2019, 7(2), 126-132. https://doi.org/10.31413/nativa.v7i2.6261
CRUZ, L.R.D., et al. Development and quality of gladiolus stems with the use of vermicompost and Trichoderma sp. in substrate. Ornamental Horticulture. 2018, 24(1), 70-7. https://doi.org/10.14295/oh.v24i1.1131
D'AGOSTINO, F. and MORANDI, M.A.B., 2009. Análise da viabilidade comercial de produtos à base de Bacillus subtilis e Bacillus pumilus para o controle de fitopatógenos no Brasil. In: BETTIOL, W. e MORANDI, M.A.B, eds. Biocontrole de doenças de plantas: uso e perspectivas, Jaguariúna: Embrapa Meio Ambiente, pp. 299-316. Available from: https://www.alice.cnptia.embrapa.br/bitstream/doc/580913/1/2009CL15.pdf
FASUSI, O.A., CRUZ, C. and BABALOLA, O.O. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture. 2021, 11(2), 163. https://doi.org/10.3390/agriculture11020163
FUKAMI, J., CEREZINI, P. and HUNGRIA, M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 2018, 8(1) 1-12. https://doi.org/10.1186/s13568-018-0608-1
GALDIANO JÚNIOR, R.F., et al. Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered brazilian orchid, and their role in acclimatization. Revista Brasileira de Ciência do Solo. 2011, 35, 729-737. https://doi.org/10.1590/S0100-06832011000300008
HERRERA, H., et al. 2020. Orchid-associated bacteria and their plant growth promotion capabilities. In: MÉRILLON, J, KODJA, H. eds. Orchids Phytochemistry, Biology and Horticulture: Fundamentals and Applications, Springer Nature Switzerland AG, pp. 1-26.
KRAVCHENKO, L., et al. The effect of tryptophan of plant root metabolites on the phytostimulating activity of rhizobacteria. Mikrobiologiya. 2004, 73(2), 195–198. https://doi.org/10.1023/b:mici.0000023982.76684.9d
KHAN, N., et al. Plant growth-promoting rhizobacteria and their role as bio-inoculants for sustainable agriculture under stressful environments. Biofertilizers. 2021, 2021, 313-321. https://doi.org/10.1016/B978-0-12-821667-5.00020-8
MASOOD, S., ZHAO, X.Q. and SHEN, R.F. Baccillus pumilus promotes the groth and nitrogen uptke of tomato plants under nitrogen fertilization. Scientia Horticulturae. 2020, 272, e109581. https://doi.org/10.1016/j.scienta.2020.109581
MEHTA, P., et al. Endophytic Fungi: Role in Phosphate Solubilization. Advances in Endophytic Fungal Research. 2019, 2019, 183-209. https://doi.org/10.1007/978-3-030- 03589-1_9
MEYER, M.C., MAZARO, S.M. and SILVA, J.C. Trichoderma: uso na agricultura. Embrapa Soja-Livro científico (Alice). 2019. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1117296/trichoderma-uso-na-agricultura
MINH, T.N., et al. Phenolic compounds and antioxidant activity of Phalaenopsis orchid hybrids. Antioxidants. 2016, 5(3), 31. https://doi.org/10.3390%2Fantiox5030031
NASCENTE, A.S., et al. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research. 2017, 24, 2956-2965. https://doi.org/10.1007/s11356-016-8013-2
NIETO-JACOBO, M.F., et al. Condições de crescimento ambiental de Trichoderma spp. afeta os derivados do ácido indolacético, os compostos orgânicos voláteis e a promoção do crescimento das plantas. Frontiers Plant Science. 2017, 8, 1-18.
SAHM, D.F. and WASHINGTON, J.A. Antibacterial susceptibility tests: dilution methods. In: BALOWS, A. et al. Manual of clinical microbiology. 5th ed. Washington, DC: American Society for Microbiology, 1991.
SANSINENEA, E. Bacillus spp.: as plant growth-promoting bacteria. Secondary metabolites of plant growth promoting rhizomicroorganisms. 2019, 225-237. https://doi.org/10.1007/978-981-13-5862-3_11
SANTOS, L.D., et al. Desenvolvimento e produtividade de trigo submetido a aplicações aéreas sequenciais de Azospirillum. Research, Society and Development. 2020, 9(10). https://doi.org/10.33448/rsd-v9i10.8680
SARRUGE, J. R. Soluções nutritivas. Summa Phytopathologica. Piracicaba, 1975.
SHEU, T.Y. and MARSHALL, R.T. Micro-encapsulation of Lactobacilli in calcium alginate gels. Journal of Food Science. 1993, 54(3), 557-561. https://doi.org/10.1111/j.1365-2621.1993.tb04323.x
SILVA, M.A., et al. Individual and combined growth-promoting microorganisms affect biomass production, gas exchange and nutrient content in soybean plants. Revista Caatinga. 2020, 33(3), 619-632. https://doi.org/10.1590/1983-21252020v33n305rc
SOOD, M., et al. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants. 2020, 9(6), 762. https://doi.org/10.3390/plants9060762
SULTANA, K., et al. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology. 2000, 62(1-2), 47-55. https://doi.org/10.1016/S0168-1605(00)00380-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Lorena Bezerra de Medeiros, Antonio Maricélio Borges de Souza, Guilherme Rodrigues Vieira, Kássia Barros Ferreira, Thiago Souza Campos, Kathia Fernandes Lopes Pivetta, Everlon Cid Rigobelo
This work is licensed under a Creative Commons Attribution 4.0 International License.