Alternative products for controlling Sclerotinia sclerotiorum in vivo AND in vitro in canola crops
DOI:
https://doi.org/10.14393/BJ-v40n0a2024-53799Keywords:
Biological control, Brassica napus, Enzymatic activity.Abstract
Products that activate plant defense mechanisms, such as white mold, may increase the disease control spectrum in canola crops as an alternative to chemical control for disease management, aiming at lower environmental impacts and selection pressure on pathogens. This study evaluated Sclerotinia sclerotiorum control and resistance induction in canola crops with alternative products. In vitro and detached leaf experiments were conducted in a laboratory, and in vivo experiments occurred in a greenhouse. High Roots®; V6®; Maxi Flor®; Wert Plus®; potassium, manganese, and copper phosphites; manganese; procymidone fungicide; and Ascophyllum nodosum, Bacillus subtilis, and Bacillus thuringiensis extracts assessed S. sclerotiorum mycelial growth in vitro in detached leaves, white mold severity in a greenhouse, and enzymatic analysis in leaf tissues. The last two experiments also received the acibenzolar-S-methyl and Trichoderma asperellum treatments. S. sclerotiorum mycelial growth showed 100% inhibition under B. subtilis and Wert Plus® at 1000 ppm and procymidone at 100 and 1000 ppm in vitro. The procymidone and B. subtilis treatments in detached leaves inhibited 100% of fungus growth. The greenhouse experiments with lower severity were procymidone, copper phosphite, B. thuringiensis, B. subtilis, manganese phosphite, potassium phosphite, High Roots®, and V6®. Higher peroxidase enzyme activity occurred in plants treated with acibenzolar-S-methyl, copper phosphite, and fungicide 48 hours after pathogen inoculation. The polyphenol oxidase enzyme did not show activity. Alternative products were responsive and may aid the chemical control of white mold in canola crops.
Downloads
References
ASSUNÇÃO, A.T.S., et al. Controle de antracnose na cultura do feijão com produtos alternativos em casa de vegetação. Brazilian Journal of Development. 2020, 6(3), 9971-9982. https://doi.org/10.34117/bjdv6n3-031
ÁVILA, F.W., et al. Phosphite supply affects phosphorus nutrition and biochemical responses in maize plants. Australian Journal of Crop Science. 2011, 5(6), 646-653 https://doi/10.3316/informit.281781719761645
BARILLI, E., PRATS, E. and RUBIALES, D. Benzothiadiazole and BABA improve resistance to Uromyces pisi (Pers.) Wint. in Pisum sativum L. with an enhancement of enzymatic activities and total phenolic content. European Journal of Plant Pathology. 2010, 128(4), 483–493. https://doi.org/10.1007/s10658-010-9678-x
BONALDO, S.M., PASCHOLATI, S.F. and ROMEIRO, R.S. Indução de resistência: noções básicas e perspectivas. In: CAVALCANTI, L.S., et al. (Eds.) Indução de resistência em plantas a patógenos e insetos. Piracicaba: Fealq, 2005, pp. 11-28.
BRADFORD, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976, 72(7), 248-254. https://doi.org/10.1006/abio.1976.9999
BRADLEY, C.A., et al. Response of canola cultivars to Sclerotinia sclerotiorum in controlled and field environments. Plant Disease. 2006, 90(1), 215-219. https://doi.org/10.1094/PD-90-0215
CAMPOS, A.D., et al. Atividade de peroxidase e polifenoloxidase na resistência do feijão à antracnose. Pesquisa Agropecuária Brasileira. 2004, 39(7), 637-643. https://doi.org/10.1590/S0100-204X2004000700004
CARDOSO, R.M.L., LEITE, R.M.B.V.C. and BARBOSA, C.J. Doenças da Canola. In: AMORIN, L., et al. (Eds.) Manual de Fitopatologia: doenças de plantas cultivadas. 5th ed. Vol. 2. São Paulo: Ceres, 2016, pp. 233-241.
CARDOSO, S.S., et al. Eficiência de fungicidas no controle do mofo branco na cultura da soja. Scientia Agraria Paranaensis. 2015, 14(1), 49-52. http://dx.doi.org/10.18188/sap.v14i1.8869
CAVALCANTI, F.R., et al. Induction of resistance against Verticillium dahliae in cacao by a Crinipellis perniciosa suspension. Journal of Plant Pathology. 2008, 90(2), 271-278. https://doi.org/10.1046/j.1365-3059.2002.00754.x
CHAHAL, S.S. and RAWLA, G.S. Influence of trace elements and organic growth factors on the growth of Penicillium crustosum Thorn. Prec. Indian Aead. Science. 1980, 89(3), 301-306.
CHEN, Y., et al. Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed. Biological Control. 2014, 78(1), 67-76. https://doi.org/10.1016/j.biocontrol.2014.07.012
CHET, I., BENHAMOU N. and HARAN S. Mycoparasitism and lytic enzymes. In: HARMAN, G.E. and KUBICEK, C.P. (Eds). Trichoderma and Gliocladium, vol. 2. London 1998, pp. 153–172.
CONAB (Companhia Brasileira de Abastecimento). Acompanhamento da safra brasileira de grãos – sexto levantamento, safra 2022/23. Available in: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos
CHRISTMANN, P.E.T.P., et al. In vitro control of Colletotrichum lindemuthianum by Trichoderma spp. and in vivo with alternative products. International Journal of Advanced Engineering Research and Science. 2019, 6(10). https://dx.doi.org/10.22161/ijaers.610.12
DILDEY, O.D. F., et al. Trichoderma-bean interaction: defense enzymes activity and endophytes. African Journal of Agricultural Research. 2016, 11(43), 4286-4292. https://dx.doi.org/10.5897/AJAR2016.11687
DUANGMAIL, K. and APENTEN, R.K.O. A comparative study of polyphenoloxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chemistry. 1999, 64(3), 351-359. https://doi.org/10.1016/S0308-8146(98)00127-7
FERNANDO, W.G.D., NAKKEERAN, S. and ZHANG, Y. Eco friendly methods in combating Sclerotinia sclerotiorum (Lib.) de Bary. Recent Research in Developmental and Environmental Biology. 2004, 1(2). p. 329–347. ISBN: 81-7736-217-8
GABARDO, G., et al. Alternative products to control late season diseases in soybeans. Ciência Rural. 2022, 52(2), 1-6, 2022. https://doi.org/10.1590/0103-8478cr20210260
GABARDO, G., et al. Alternative Products to Control Soybean Downy Mildew in the Field. Journal of Agricultural Science. 2020, 12(8), 160-170, 2020. DOI: https://doi.org/10.5539/jas.v12n8p160
GADAGA, S.J.C., et al. Phosphites for the control of anthracnose in common bean. Pesquisa Agropecuária Brasileira. 2017, 52(1), 36-44. https://doi.org/10.1590/s0100-204x2017000100005
GÁSPERI, A.C., PRESTES, A.M. and COSTAMILAN, L.M. Reação de cultivares de soja à podridão vermelha da raiz causada por Fusarium solani f. sp. glycines. Fitopatologia Brasileira. 2003, 28(5), 544-547. 2003. https://doi.org/10.1590/S0100-41582003000500013
GUEST, D. and GRANT, B. The complex action of phosphonates as antifungal agents. Biological Review. 1991, 66(2), 159-187. https://doi.org/10.1111/j.1469-185X.1991.tb01139.x
HENNIPMAN, H.S., et al. Biotic and abiotic products for bean angular spot control. International Journal of Advanced Engineering Research and Science. 2019, 6(9), 139-147, Sep. https://dx.doi.org/10.22161/ijaers.69.15
HOWELL, C.R. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease. 2003, 87(1), 4-10. https://doi.org/10.1094/PDIS.2003.87.1.4
HUBER, D.M. and GRAHAM R.D. The role of nutrition in crop resistance and tolerance to disease. In: RENGEL, Z. (Ed.). Mineral nutrition of crops fundamental mechanisms and implications. Food Product Press: New York, 1999, pp. 205–226.
JACKSON, T.J., et al. Action of the fungicide phosphate on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology. 2001, 49(1), 147-154. https://doi.org/10.1046/j.1365-3059.2000.00422.x
JACOBSEN B.J., ZIDACK N.K. and LARSON, B.J. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology. 2004, 94(11), 1272-1275. https://doi.org/10.1094/PHYTO.2004.94.11.1272
JULIATTI, F.C., et al. Escala diagramática para avaliação da severidade de mofo branco em soja. Bioscience Journal. 2013, 29(3), 676-680.
KAMAL, M.M. Progress towards biological control of Sclerotinia diseases in Charles Sturt University. Innovator, Graham Centre for Agricultural Innovation, winter edition. p 11-12, 2015.
KLINGELFUSS, L.H., YORINORI, J.T. and DESTRO, D. Inoculation methods for identification of resistance in soybean to Fusarium solani f. sp. glycines under greenhouse conditions. Fitopatologia Brasileira. 2007, 32(1), 50-55. https://doi.org/10.1590/S0100-41582007000100007
KUHN, O.J. and PASCHOLATI, S.F. Custo adaptativo da indução de resistência em feijoeiro mediada pela rizobactéria Bacillus cereus ou acibenzolar S-metil: atividade de enzimas, síntese de fenóis e lignina e biomassa. Summa Phytopathologica. 2010, 36(2), 107-114. https://doi.org/10.1590/S0100-54052010000200001
LUSSO, M.F.G. and PASCHOLATI, S.F. Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathologica. 1999, 25(3), 244-249.
LUZ, G.L. et al. Temperatura base inferior e ciclo de híbridos de canola. Ciência Rural. 2012, 42(9), 1549-1555. https://doi.org/10.1590/S0103-84782012000900006
MAHESHWARI, D.K. (Ed.). Bacteria in Agrobiology: disease management. Berlin Heidelberg: Springer-Verlag, 2013. 495 p.
MCGRATH, M.T. What are fungicides? The plant health instructor. 2004 Available in: http://www.apsnet.org/edication/introplantpath/topics/fungicides/pdfs.2004
MEHTA, N., HIEU, N. and SANGWAN, M. Efficacy of various antagonistic isolates and species of against causing white stem rot of mustard. Journal Mycology Plant Pathology. 2012, 42(2), 244-250.
MELO, L.G.L., et al. Indutores de resistência abióticos no controle da fusariose do abacaxi. Pesquisa Agropecuária Brasileira. 2016, 51(10), 1703-1709, out. https://doi.org/10.1590/s0100-204x2016001000001
MUIS, A. and QUIMIO, A.J. Effectiveness of Bacillus subtilis (Ehrenberg) Cohn against Rhizoctonia solani Kuhn in vitro. Journal Agroland. 2014, 9(3), 234-239.
NOJOSA, G.B.A., RESENDE, M.L.V. and RESENDE, A.V. Uso de fosfitos e silicatos n indução de resistência. In: CAVALCANTI, L.S., et al. Indução de resistência em plantas a patógenos e insetos. Piracicaba: FEALQ, 2005. pp.139-153.
OLIVEIRA, J.A. Efeito do tratamento fungicida em sementes no controle de tombamento de plântulas de pepino (Cucumis sativus L.) e pimentão (Capsicum annum L.). Lavras: Universidade Federal de São Paulo, 1991. Dissertação de Mestrado.
PERVEEN, K., HASEEB, A. and SHUKLA, P.K. Effect of Sclerotinia sclerotiorum on the disease development, growth, oil yield and biochemical changes in plants of Mentha arvensis. Saudi Journal of Biological Sciences. 2010, 17(4), 291-294. https://doi.org/10.1016/j.sjbs.2010.05.008
POZZA JUNIOR, M.C., et al. Phaseolin induction on common-bean cultivars and biological control of Colletotrichum lindemuthianum 89 race by Baccharis trimera (Less.) Dc. Brazilian Archives of Biology and Technology. 2021, 64(1), 1-9. https://doi.org/10.1590/1678-4324-75years-2021200816
R DEVELOPMENT CORE TEAM R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2011. Available in: http://www.R-project.org/
REMUSKA, A. C. and DALLA PRIA, M. Efeito de Bacillus thuringiensis e Trichoderma sp. no crescimento de fungos fitopatogênicos. Publicação UEPG Ciências Exatas Terra. 2007, 13(3), 31-36, Dec.
RIBEIRO JUNIOR, P.M., et al. Fosfito de potássio na indução de resistência a Verticillium dahliae Kleb. em mudas de cacaueiro (Theobroma cacao L.). Ciências Agrotécnicas. 2006, 30(4), 629-636. https://doi.org/10.1590/S1413-70542006000400006
RODRIGUES, M.A.T. Classificação de fungicidas de acordo com o mecanismo de ação proposto pelo FRAC. Botucatu: Universidade Estadual Paulista, 2006. Dissertação de mestrado.
SAHARAN, G.S. and MEHTA, N. Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer Science Business: Netherlands. 2008
SAMARAS, A., et al. Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants, 2021, 10 (6), 1113. https://doi.org/10.3390/plants10061113
SCHURT, D.A., et al. Eficiência de diferentes moléculas na redução dos sintomas da queima das bainhas em arroz e no crescimento de Rhizoctonia solani in vitro. Revista Ceres, 2013, 60(2), 221-225. https://doi.org/10.1590/S0034-737X2013000200010
SHANER, G. and FINNEY, R.E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology, 1977, 67(8), 1051-1056. https://doi.org/10.1094/PHYTO-67-1051
SIMON, J.M., et al. Atividade fungitóxica de extratos vegetais e produtos comerciais contra Diplocarpon rosae. Summa Phytopathologica. 2016, 42(4), 351-356. DOI: https://doi.org/10.1590/0100-5405/2209
SILVA, M.S.E., et al. Uso de antagonistas e produtos alternativos no manejo pós-colheita de podridão mole em pimentão. Revista Ciência Agronomica. 2014, 45(4), 718-725, Oct-Dec. https://doi.org/10.1590/S1806-66902014000400009
SOLGI, T., et al. Transformation of canola by chit33 gene towards improving resistance to Sclerotinia sclerotiorum. Plant Protect Science. 2015, 51(1), 6–12. https://doi.org/10.17221/83/2013-PPS
STANGARLIN, J.R. and PASCHOLATI, S.F. Atividades de ribulose-1,5-bifosfato carboxilase-oxigenase (rubisco), clorofilase, β-1,3 glucanase e quitinase e conteúdo de clorofila em cultivares de feijoeiro (Phaseolus vulgaris) infectados com Uromyces appendiculatus. Summa Phytopathologica. 2000, 26(1), 34-42, 2000. ISSN: 0100-5405
TÖFOLI, J.G., MELLO, S.C. and DOMINGUES, R.J. Efeito do fosfito de potássio isolado e em mistura com fungicidas no controle da requeima do tomateiro. Arquivos do Instituto Biológico. 2012, 79(2), 201-208, abr./jun. https://doi.org/10.1590/S1808-16572012000200008
TOMLIN, C.D.S. The pesticide manual: a world compendium. 12. ed. Surrey, UK: British Crop Protection Council, 2002.
TOMM, G.O., et al. Tecnologia para produção de canola no Rio Grande do Sul. Passo Fundo: Embrapa Trigo, 2009.
TORNINCASA, E.P., et al. Periodic table of the fungicides. Indianapolis: Dow Agrosciences. 2002.
VENEGAS, F. and SAAD, J.C.C. Fungigação no controle do mofo branco e produtividade do feijoeiro em condições de cerrado brasileiro. Irriga. 2010, 15(2), 159- 172. https://doi.org/10.15809/irriga.2010v15n2p159
VIECELLI, C. A., et al. Indução de resistência em feijoeiro a mancha angular por extratos de micélio de Pycnoporus sanguineus. Summa Phytopathologica, 2010, 36(1), 73-80. https://doi.org/10.1590/S0100-54052010000100013.
ZANATTA, T.P. Caracterização de isolados de Sclerotinia sclerotiorum e manejo do mofo branco e nematoide das galhas utilizando indutores de resistência na cultura da soja. Santa Maria: Universidade Federal de Santa Maria, 2019. Dissertação de Mestrado.
WALTERS, D.R., RATSEP, J. and HAVIS, N.D. Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 2013, 64(5), 1263-1280. https://doi.org/10.1093/jxb/ert026
WANG, M., et al. Bacillus thuringiensis exopolysaccharides induced systemic resistance against Sclerotinia sclerotiorum in Brassica campestris L. Biological Control, 187 (1), 105267-105268, 2023. https://doi.org/10.1016/j.biocontrol.2023.105267
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hagata Siqueira Henipman, Maristella Dalla Pria, Polyana Elvira Christmann Rinaldi, Filipe Lemos Jacques, Letícia Reis
This work is licensed under a Creative Commons Attribution 4.0 International License.