Epiphytic and endophytic bacteria for the control of Botrytis cinerea in vitro and in grape berries of cv. sauvignon blanc in southern Brazil

Autores

DOI:

https://doi.org/10.14393/BJ-v41n0a2025-74859

Palavras-chave:

English

Resumo

A podridão cinzenta (PC) em videiras, causada pelo Botrytis cinerea, é uma doença de pré e pós-colheita que causa perdas significativas no sul do Brasil. O objetivo deste estudo foi avaliar o potencial de bactérias epifíticas e endofíticas no controle do B. cinerea in vitro e in vivo na variedade 'Sauvignon Blanc' (SB). Os isolados de  B. cinerea e bactérias epifíticas e endofíticas foram obtidos de cachos de uva e do filoplano da variedade SB, respectivamente. Quatro isolados epifíticos e dois endofíticos que mostraram os maiores índices de antibiose in vitro e in vivo foram identificados usando fenotipagem e sequenciamento de DNA. Os tratamentos foram realizados em um delineamento experimental completamente casualizado com cinco repetições, incluindo: a) controle; b) B. cinerea; c) produto comercial - Ecoshot® com Bacillus amyloliquefaciens; d) bactérias epifíticas e e) bactérias endofíticas. Entre os 52 isolados, quatro epifíticos e dois endofíticos, apresentaram os maiores grau de inibição e inibiram significativamente o crescimento do B. cinerea. Os isolados UEP40, UEP43, UEN13 e UEN14 apresentaram reações positivas para ureia e indol. Os isolados epifíticos UEP43 e UEP51 e o isolado endofítico UEN13 reduziram a severidade da BBR em bagas de uva destacadas em aproximadamente 55% e 49% entre 72 e 168 horas após a inoculação, respectivamente. Esses isolados foram identificados como Serratia marcescens, Curtobacterium flaccumfaciens pv. flaccumfaciens e Staphylococcus equorum, respectivamente. Esses isolados bacterianos são agentes potenciais de biocontrole de B. cinerea. No entanto, mais pesquisas são necessárias para confirmar sua eficácia em vinhedos no sul do Brasil.

Referências

AVENOT, H.F., et al. Different levels of resistance to cyprodinil and iprodione and lack of fludioxonil resistance in Botrytis cinerea isolates collected from pistachio, grape, and pomegranate fields in California. Crop Protection. 2018, 112, 274–281. https://doi.org/10.1016/j.cropro.2018.06.005

BRUISSON, S., et al. Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Frontiers Microbiology. 2019, 10, 2726. https://doi.org/10.3389/fmicb.2019.02726

CALONNEC, A., et al. The reliability of leaf bioassays for predicting disease resistance on fruit: a case study on grapevine resistance to downy and powdery mildew. Plant Pathology. 2012, 62, 533-544. https://doi.org/10.1111/j.1365-3059.2012.02667.x

CHÁVEZ-ARTEAGA, K.T., et al. Candidate rhizobacteria as plant growth-promoters and root-knot nematode controllers in tomato plants. Scientia Agropecuaria. 2022, 13, 423-432. http://dx.doi.org/10.17268/sci.agropecu.2022.038

COMPANT, S., et al. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. Biological Control. 2013, 58, 435-455. http://dx.doi.org/10.1007/s10526-012-9479-6

DAL BELLO, G., et al. Biocontrol of postharvest grey mold on tomato by yeasts. Journal of Phytopathology. 2008, 156, 257-263. https://doi.org/10.1111/j.1439-0434.2007.01351.x

DE BEM, B. P., et al. Effect of Y-trellis and vertical shoot positioning training systems on downy mildew and botrytis bunch rot of grape in highlands of southern Brazil. Scientia Horticulturae. 2015, 185, 162-166. https://doi.org/10.1016/j.scienta.2015.01.023

EVSEEV, P., et al. Curtobacterium spp. and Curtobacterium flaccumfaciens: Phylogeny, Genomics-Based Taxonomy, Pathogenicity, and Diagnostics. Current Issues in Molecular Biology. 2022, 44, 889–927. https://doi.org/10.3390/cimb44020060

FEDELE, G., BRISCHETTO, C. and ROSSI, V. Biocontrol of Botrytis cinerea on Grape Berries as Influenced by Temperature and Humidity. Frontiers Plant Science. 2020, 11, 1232. https://doi.org/10.3389/fpls.2020.01232

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia. 35, 1039-1042, 2011. https://doi.org/10.1590/S1413-70542011000600001

GAO, Y., LI, Z. and HAN, Y. Community structure of endophytic fungi in roots and leaves of Fagopyrum mill and Avena sativa in a Chinese northern cold region. Bioscience Journal, 2023, 39, e39039. https://doi.org/10.14393/BJ-v39n0a2023-65820

GONZÁLEZ-FERNÁNDEZ, E., et al. Identification and evaluation of the main risk periods of Botrytis cinerea infection on grapevine based on phenology, weather conditions and airborne conidia. Journal of Agricultural Science. 2020, 158, 88–98. https://doi.org/10.1017/S0021859620000362

HAIDAR, R., et al. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytophatologia Mediterranea. 2016, 55, 301-322. https://doi.org/10.14601/Phytopathol_Mediterr-18079

HARDOIM, P. R., et al. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews. 2015, 79, 293-320. https://doi.org/10.1128/mmbr.00050-14

KASFI, K., et al. Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Spanish Journal of Agricultural Research. 2018, 16(1), e1002 https://doi.org/10.5424/sjar/2018161-1137

LIU, H., et al. Isolation, characterization, and tea growth-promoting analysis of jw-cz2, a bacterium with 1-aminocyclopropane-1-carboxylic acid deaminase activity isolated from the rhizosphere soils of tea. Frontiers in Microbiology, 2022, 13, 1-12. https://doi.org/10.3389/fmicb.2022.792876

MAIA, J. N., et al. Gray mold in strawberries in the Paraná state of Brazil is caused by Botrytis cinerea and its isolates exhibit multiple-fungicide resistance. Crop protection. 2021, 140, 105415. https://doi.org/10.1016/j.cropro.2020.105415

MARTINS, G., et al. Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations. PLoS ONE, 2013, 8, 1-9. https://doi.org/10.1371/journal.pone.0073013

NAGRALE, D. T., et al. PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology and Biotechnology. 2023, 39, 1-18. https://doi.org/10.1007/s11274-023-03536-0

PANTELIDES, I. S., et al. Isolation, identification and in vitro screening of grapevine yeasts for the control of black Aspergilli on grapes. Biological Control. 2015, 88, 46-53. https://doi.org/10.1016/j.biocontrol.2015.04.021

PEEL, M. C., FINLAYSON, B. L. AND MCMAHON, T. A. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences. 2007, 11, 633–1644. https://doi.org/10.5194/hess-11-1633-2007

SHAO, W., ZHAO, Y. and MA, Z. Advances in Understanding Fungicide Resistance in Botrytis cinerea in China. Phytopathology, 2021, 11, 455–463. https://doi.org/10.1094/PHYTO-07-20-0313-IA

STURZ, A.V., CHRISTIE, B. R. and NOWAK, J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences. 2000, 19, 1–30. https://doi.org/10.1080/07352680091139169

THOME, R. M., et al. Controle in vitro de Botrytis cinerea e Penicillium italicum por leveduras antagonistas. Semina. 2020, 41, 2411-241. https://doi.org/10.5433/1679-0359.2020v41n5supl1p2411

VARGAS, M., et al. Isolation and selection of epiphytic yeast for biocontrol of Botrytis cinerea pers. on table grapes. Chilean Journal of Agricultural Research. 2012, 72, 332-337. http://dx.doi.org/10.4067/S0718-58392012000300005

VERMELHO, A. B., et al. Práticas de microbiologia. 2 ed. São Paulo: 2º Ed, Guanabara, Koogan, 2019.

VIONNET, L., et al. Microbial life in the grapevine: what can we expect from the leaf microbiome? OENO One. 2018, 52, 205–210, 2018. https://doi.org/10.20870/oeno-one.2018.52.3.2120

WHITE, T. J. BRUNS, T., LEE, S., and TAYLOR, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.). Academic Press, London, pp.315-322, 1990.

YU, T., ZHANG, H., LI, X. and ZHENG, X. Biocontrol of Botrytis cinerea in apple fruit by Cryptococcus laurentii and indole-3-acetic acid. Biological Control. 2008, 46, 171-177. https://doi.org/10.1016/j.biocontrol.2008.04.008

ZAHEER, A., et al. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Research Microbiology. 2016, 167, 510-520. https://doi.org/10.1016/j.resmic.2016.04.001

Downloads

Publicado

2025-02-12

Edição

Seção

Ciências Agrárias

Como Citar

Epiphytic and endophytic bacteria for the control of Botrytis cinerea in vitro and in grape berries of cv. sauvignon blanc in southern Brazil. Bioscience Journal [online], 2025. [online], vol. 41, pp. e41005. [Accessed16 março 2025]. DOI 10.14393/BJ-v41n0a2025-74859. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/74859.