Synthesis and antifungal activity of new O-alkylamidoximes
DOI:
https://doi.org/10.14393/BJ-v37n0a2021-54171Palavras-chave:
Antifungal, Candida, O-alkylation, O-alkylamidoximes.Resumo
The continuous prospection for molecules that may be useful in the development of new therapeutic agents is a highly relevant issue, mainly because the launch of new drugs on the market does not accompany the emergence of new resistant microorganisms. In this context, this work describes the synthesis of new O-alkylamidoximes and the evaluation of its antifungal activity. The new O-alkylamidoximes were prepared using easy synthetic protocols and tested against three Candida species using the broth microdilution method. The synthesized compounds were obtained in moderate to good yields in high purity and without any observable decomposition. All tested compounds shown moderate antifungal activity against at least one strain of Candida. Despite the moderate activity of the new compounds, this was the first report involving the antifungal activity of O-alkylamidoximes. In view of the low chemotherapy arsenal and the development of fungal strains resistant to traditional antifungal agents, the present study opens new possibilities for the preparation of a new class of more active antifungal agents.
Downloads
Referências
AL-ZEREINI, W., et al. New aromatic nitro compounds from Salegentibacter sp. T436, an Arctic Sea ice bacterium: taxonomy, fermentation, isolation and biological activities. The journal of Antibiotico. 2007, 60(5), 301-308. https://doi.org/10.1038/ja.2007.38
ANDRADE, D., FREITAS FILHO, J.R. and FREITAS, J.C.R. Aplicação de amidoximas como catalisadores da reação de alilação por aliltrifluoroborato de potássio em meio bifásico. Quimica Nova. 2016, 39(10), 1225-1235. https://doi.org/10.21577/0100-4042.20160158
ARMAREGO, W.L.F. Purification of Laboratory Chemicals. 8ª ed. Amsterdam: Butterworth Heinemann, 2017.
BARROS, C.J.P., et al. Synthesis of amidoximes using an efficient and rapid ultrasound method. Journal of the Chilean Chemical Society. 2011, 56(2), 721-722. https://doi.org/10.4067/S0717-97072011000200022
BERMAN, J. and KRYSAN, D.J. Drug resistance and tolerance in fungi. Nature Reviews Microbiology. 2020, 15, 1-13. https://doi.org/10.1038/s41579-019-0322-2
BOYKIN, D.W., et al. Anti-pneumocystis activity of bis-amidoximes and bis-o-alkylamidoximes prodrugs. Bioorganic & Medicinal Chemistry Letters. 1996, 6(24), 3017-3020. https://doi.org/10.1016/S0960-894X(96)00557-4
CAPOTE, A.M., et al. Micosis superficiales: casuística del Departamento de Micología del Instituto Nacional de Higiene “Rafael Rangel”, Caracas, Venezuela (2001-2014). Investigación Clínica. 2016, 57(1), 47-48.
CAVALEIRO, C., et al. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. Journal of Applied Microbiology. 2006, 100(6), 1333-1338. https://doi.org/10.1111/j.1365-2672.2006.02862.x
Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts. 4th ed. CLSI standard M27 Wayne, PA: Clinical and Laboratory Standards Institute, 2017.
COSTA-DE-OLIVEIRA, S. and RODRIGUES, A.G. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms. 2020, 8(2), 154-173. https://doi.org/10.3390/microorganisms8020154
COSTELLO, E.K., et al. Bacterial community variation in human body habitats across space and time. Science. 2009, 326(5960), 1694-1697. https://doi.org/10.1126/science.1177486
COVIELLO, D.A. Preparation of O‐alkylamidoximes from α‐alkyloximinocarboxamides by the hofmann hypobromite reaction. Journal of Pharmaceutical Sciences. 1964, 53(8), 971-972. https://doi.org/10.1002/jps.2600530833
DE KRAKER, M.E.A., STEWARDSON, A.J. and HARBARTH, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Medicine. 2016, 13(11), 1-6. https://doi.org/10.1371/journal.pmed.1002184
EADES, C.P. and ARMSTRONG-JAMES, D.P.H. Invasive fungal infections in the immunocompromised host: Mechanistic insights in an era of changing immunotherapeutics. Medical Mycology. 2019, 57(3). 307-317. https://doi.org/10.1093/mmy/myy136
ESPINEL-INGROFF, A., et al. Quality control and reference guidelines for clsi broth microdilution susceptibility method (M38-A Document) for amphotericin b, itraconazole, posaconazole, and voriconazole. Journal of Clinical Microbiology. 2005, 43(10), 5243-5246. https://doi.org/10.1128/JCM.43.10.5243-5246.2005
IRFAN, M., et al. Effect of quinoline based 1,2,3-triazole and its structural analogues on growth and virulence attributes of Candida albicans. PLoS ONE. 2017, 12(4), 1-23. https://doi.org/10.1371/journal.pone.0175710
KAPITAN, M., et al. Fungi as part of the microbiota and interactions with intestinal bacteria. Current Topics in Microbiology and Immunology. 2019, 422, 265-301. https://doi.org/10.1007/82_2018_117
KASPER, L., et al. Antifungal activity of clotrimazole against Candida albicans depends on carbon sources, growth phase and morphology. Journal of Medical Microbiology. 2015, 64(7), 714-723. https://doi.org/10.1099/jmm.0.000082
KUNG, H.C., et al. guidelines for the use of antifungal agents in patients with invasive fungal diseases in Taiwan. Journal of Microbiology, Immunology and Infection. 2016, 51(1), 1-17. https://doi.org/10.1016/j.jmii.2017.07.006
LEE, H. and LEE, D.G. Novel approaches for efficient antifungal drug action. Journal of Microbiology and Biotechnology. 2018, 28(11), 1771-1781. https://doi.org/10.4014/jmb.1807.07002
LI, Y., et al. Synthesis, insecticidal activity, and structure–activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings. Organic & Biomolecular Chemistry. 2013, 11(24), 3979-3988. https://doi.org/10.1039/C3OB40345A
MCCARTHY, M.W., et al. Novel Agents and drug targets to meet the challenges of resistant fungi. The Journal of Infectious Diseases. 2017, 216(3), 474-483. https://doi.org/10.1093/infdis/jix130
MORALES, G., et al. Antimicrobial activity of three baccharis species used in the traditional medicine of northern Chile. Molecules. 2008, 13(4), 790-794. https://doi.org/10.3390/molecules13040790
OZCAN, S., et al. Oxadiazole-isopropylamides as potent and noncovalent proteasome inhibitors. Journal of Medicinal Chemistry. 2013, 56(10), 3783-3805. https://doi.org/10.1021/jm400221d
PFALLER, M.A. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. The American Journal of Medicine. 2012, 125(1), 3-13. https://doi.org/10.1016/j.amjmed.2011.11.001
PINZI, L. and RASTELLI, G. Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences. 2019, 20(18), 4331-4353. https://doi.org/10.3390/ijms20184331
PRASAD, R. and KAPOOR, K. Multidrug resistance in yeast candida. International Review of Cytology. 2004, 242, 215-248. https://doi.org/10.1016/S0074-7696(04)42005-1
REHSE, K. and BREHME, F. Amidoximes and their prodrugs. Archiv der Pharmazie - Chemistry in Life Sciences. 1998, 331(12), 375-379. https://doi.org/10.1002/(SICI)1521-4184(199812)331:12<375:AID-ARDP375>3.0.CO;2-F
SILVA, S., et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews. 2012, 36(2), 288-305. https://doi.org/10.1111/j.1574-6976.2011.00278.x
SPITZER, M., ROBBINS, N. and WRIGHT, G.D. Combinatorial strategies for combating invasive fungal infections. Virulece. 2017, 8(2), 169-185. https://doi.org/10.1080/21505594.2016.1196300
STILL, W.C., KAHN, M. and MITRA, A. Rapid chromatographic technique for preparative separations with moderate resolution. Journal of Organic Chemistry. 1978, 43(14), 2923-2925. https://doi.org/10.1021/jo00408a041
SZABADOS, E., et al. BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly (ADP-ribose) polymerase. Biochemical Pharmacology. 2000, 59(8), 937-945. https://doi.org/10.1016/s0006-2952(99)00418-9
TARASENKO, M., et al. Room-temperature synthesis of pharmaceutically important carboxylic acids bearing the 1,2,4-oxadiazole moiety. Tetrahedron Letters. 2017, 58(13), 3672-3677. https://doi.org/10.1016/j.tetlet.2017.08.020
VEERMAN, J.J.N., et al. Strategic and tactical approaches to the synthesis of 5,6-dihydro-[1,2,4]oxadiazines. Heterocycles. 2016, 92(12), 2166-2200. https://doi.org/10.3987/COM-16-13570
WANG, R.J., MILLER, R.F. and HUANG, L. Approach to fungal infections in human immunodeficiency virus-infected individuals: pneumocystis and beyond. Clinics in Chest Medicine. 2017, 38(3), 465-477. https://doi.org/10.1016/j.ccm.2017.04.008
WHALEY, S.G., et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Fronters Microbiology. 2017, 7, 2173-2184. https://doi.org/10.3389/fmicb.2016.02173
WIEDERHOLD, N. P. Antifungal resistance: current trends and future strategies to combat. Infection and Drug Resistance. 2017, 29(10), 249-259. https://doi.org/10.2147/IDR.S124918
ZHAN-TAO, Z., et al. Syntheses and antibacterial activities of novel erythromycin O-Alkylamidoximes. Chemical Research in Chinese Universities. 2005, 21, 540-544.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Maria Verônica Sales Barbosa, Alana Karoline Penha Nascimento, Rodrigo Ribeiro Alves Caiana, Cosme Silva Santos, Wylly Araújo Oliveira, Paulo Henrique Menezes, Juliano Carlo Rufino Freitas
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.