Study of acute and subacute toxicities and genotoxic and mutagenic potentials of the lyophilized extract of Campomanesia sessiliflora (O.Berg) mattos leaves in wistar rats
DOI:
https://doi.org/10.14393/BJ-v40n0a2024-71278Keywords:
Comet assay, Campomanesia sessiliflora, Medicinal plants, Micronuclei, toxicity.Abstract
Campomanesia sessiliflora (O.Berg) Mattos is a Brazilian native plant species used in a popular medicinal tea for treating gastrointestinal, urinary, and dermatological pathologies. This study evaluated the toxicity of Campomanesia sessiliflora (O.Berg) Mattos via acute and subacute toxicity tests. It also analyzed mutagenic and genotoxic potentials by the micronucleus test, which detects genetic material damage indicating mutagenicity, and the comet assay, which assesses DNA damage levels as a genotoxicity indicator. The plant extract initially originated from the ultrasonic maceration of Campomanesia sessiliflora (O.Berg) Mattos leaves in a hydroethanolic solution. The involved animals were adult Wistar rats. Ten females were available to evaluate acute toxicity and estimate the LD50, receiving a dose of 2000 mg/kg. The subacute toxicity evaluation used 35 females and 35 males divided into seven groups: negative control (saline control – SC), positive control (cyclophosphamide control – CC), 125 mg/kg (125), 250 mg/kg (250), 500 mg/kg (500), 1000 mg/kg (1000), and the satellite group (ST). Genotoxicity and mutagenicity experiments applied bone marrow micronucleus and comet assays. Acute and subacute toxicity tests did not present behavioral, physical, and physiological changes (p≥0.05). Administering the Campomanesia sessiliflora (O.Berg) Mattos extract reduced spleen size in male and female animals, without histopathological changes. However, doses above 500 mg/kg showed significant genotoxic and mutagenic effects in the comet and micronucleus assays compared to the control group. The extract did not exhibit acute or subacute toxicity, but doses higher than 500 mg/kg indicated some level of genotoxicity and mutagenicity.
Downloads
References
ARAÚJO, M.C.P.M. et al. Acute and sub-chronic toxicity study of aqueous extract from the leaves and branches of Campomanesia velutina (Cambess) O. Berg. Journal of Ethnopharmacology. 2017, 201, 17–25. https://doi.org/10.1016/j.jep.2017.02.043
BUCHAN, L. et al. High-fat, high-sugar diet induces splenomegaly that is ameliorated with exercise and genistein treatment. BMC Research Notes. 2018, 11, 752. https://doi.org/10.1186/s13104-018-3862-z
CAMPOS, S.C. et al. Toxicidade de espécies vegetais. Rev. Bras. Plantas Med. 2016, 18, 373–382. https://doi.org/10.1590/1983-084X/15_057
CARDOSO, C.L. et al. Leaf Oil of Campomanesia sessiliflora O. Berg. Journal of Essential Oil Research. 2010, 22, 303–304. https://doi.org/10.1080/10412905.2010.9700330
CASTRO, T.L.A. et al. Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg. Revista Colombiana de Química. 2022, 50, 10–15. https://doi.org/10.15446/rev.colomb.quim.v50n3.97095
CASTRO, T.L.A. et al. Antiproliferative action and mutagenicity of the infusion of Campomanesia sessiliflora leaves in the allium cepa model. Research, Society and Development. 2020, 9, e625974555. https://doi.org/10.33448/rsd-v9i7.4555
CATELAN, T.B.S. et al. Evaluation of the in vitro photoprotective potential of ethanolic extracts of four species of the genus Campomanesia. Journal of Photochemistry and Photobiology B: Biology. 2019, 197, 111500. https://doi.org/10.1016/j.jphotobiol.2019.04.009
DE JESUS, G.S. et al. Antimicrobial Potential of Essential Oils from Cerrado Plants against Multidrug−Resistant Foodborne Microorganisms. Molecules. 2020, 25, 3296. https://doi.org/10.3390/molecules25143296
DE MOURA, D.F. et al. Evaluation of the cytotoxicity, oral toxicity, genotoxicity, and mutagenicity of the latex extracted from Himatanthus drasticus (Mart.) Plumel (Apocynaceae). Journal of Ethnopharmacology. 2020, 253, 112567. https://doi.org/10.1016/j.jep.2020.112567
DE SOUSA, J.A. et al. Toxicological aspects of Campomanesia xanthocarpa Berg. associated with its phytochemical profile. Journal of Toxicology and Environmental Health. 2019, 82, 62–74. https://doi.org/10.1080/15287394.2018.1562392
HAMEDI, A. et al. A review of potential anti-cancer properties of some selected medicinal plants grown in Iran. Journal of Herbal Medicine. 2022, 33, 100557. https://doi.org/10.1016/j.hermed.2022.100557
JACOB FILHO, W. Reference database of hematological parameters for growing and aging rats. Aging Male. 2018, 21, 145–148. https://doi.org/10.1080/13685538.2017.1350156
KATAOKA, V.M.F., CARDOSO, C.A.L. Evaluation of the chromatographic profile and the antioxidant activity of the species Campomanesia sessiliflora (O. Berg) Mattos and Campomanesia xanthocarpa O. Berg. Revista Brasileira de Plantas Medicinais. 2013, 15, 121–129. https://doi.org/10.1590/S1516-05722013000100017
LESCANO, C.H. et al. 2019. Polyphenols Present in Campomanesia Genus: Pharmacological and Nutraceutical Approach, in: Polyphenols in Plants. Elsevier, pp. 407–420. https://doi.org/10.1016/B978-0-12-813768-0.00027-X
LIU, Q. et al. Mechanisms of the Testis Toxicity Induced by Chronic Exposure to Mequindox. Frontiers in pharmacology. 2017, 8, 679. https://doi.org/10.3389/fphar.2017.00679
MARTEY, O.-K., ARMAH, G., OKINE, L. Absence of organ specific toxicity in rats treated with Tonica, an aqueous herbal haematinic preparation. African Journal of Traditional, Complementary and Alternative Medicines. 2010, 7. https://doi.org/10.4314/ajtcam.v7i3.54781
MCBRIDE, W.H. et al. Cyclophosphamide-Induced Alterations in Human Monocyte Functions. Journal of Leukocyte Biology. 1987, 42, 659–666. https://doi.org/10.1002/jlb.42.6.659
MOSCHELLA, F. et al. Cyclophosphamide Induces a Type I Interferon–Associated Sterile Inflammatory Response Signature in Cancer Patients’ Blood Cells: Implications for Cancer Chemoimmunotherapy. Clinical Cancer Research. 2013, 19, 4249–4261. https://doi.org/10.1158/1078-0432.CCR-12-3666
NAKAKAAWA, L. et al. Oral acute, sub-acute toxicity and phytochemical profile of Brassica carinata A. Braun microgreens ethanolic extract in Wistar rats. Journal of Ethnopharmacology. 2023, 305, 116121. https://doi.org/10.1016/j.jep.2022.116121
OECD, Organization for economic cooperation and development, 2022. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure, OECD Guidelines for the Testing of Chemicals. OECD. https://doi.org/10.1787/9789264071049-en
OECD, O. for economic cooperation and development, 2016a. Test No. 474: Mammalian Erythrocyte Micronucleus Test, OECD Guidelines for the Testing of Chemicals. OECD. https://doi.org/10.1787/9789264264762-en
OECD, Organization for economic cooperation and development, 2016b. Test No. 489: In Vivo Mammalian Alkaline Comet Assay, OECD Guidelines for the Testing of Chemicals, Section 4. OECD. https://doi.org/10.1787/9789264264885-en
OECD, Organization for economic cooperation and development, 2008. Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents, OECD Guidelines for the Testing of Chemicals, OECD. https://doi.org/10.1787/9789264070684-en
PIRINTSOS, Stergios et al. From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples. Molecules 2022, 27, 4060. https://doi.org/10.3390/molecules27134060.
RIBEIRO, L.R., MARQUES, E.K., SALVADORI, D.M.F., 2003. Mutagênese ambiental. In: Encyclopedia of Toxicology. Elsevier, pp.889–891. https://doi.org/10.1016/B978-0-12-386454-3.00072-5
SILVA, B.A. et al. Effect of the peel extracts from two Campomanesia (Myrtaceae) species on Allium Cepa L. (Amaryllidaceae). Revista Agricultura Neotropical. 2022, 9, e6831. https://doi.org/10.32404/rean.v9i1.6831
TRAESEL, G.K. et al. Assessment of the cytotoxic, genotoxic, and mutagenic potential of Acrocomia aculeata in rats. Genetics and Molecular Research. 2015, 14, 585–596. https://doi.org/10.4238/2015.January.26.13
VARANDA, E.A. Atividade mutagênica de plantas medicinais. Revista de Ciências Farmacêuticas Básica e Aplicada. 2006, 27, 1–7.
VERSCHAEVE, L., VAN STADEN, J. Mutagenic and antimutagenic properties of extracts from South African traditional medicinal plants. Journal of Ethnopharmacology. 2008, 119, 575–587. https://doi.org/10.1016/j.jep.2008.06.007
VIDAL, J.D., WHITNEY, K.M. Morphologic manifestations of testicular and epididymal toxicity. Spermatogenesis. 2014, 4, e979099. https://doi.org/10.4161/21565562.2014.979099
VILLAS-BOAS, G.R. et al. Evaluation of the toxic potential of the aqueous extract from Mangifera indica Linn. (Anacardiaceae) in rats submitted to experimental models of acute and subacute oral toxicity. Journal of Ethnopharmacology. 2021, 275, 114100. https://doi.org/10.1016/j.jep.2021.114100
VILLAS-BOAS, G.R. et al. Preclinical safety evaluation of the ethanolic extract from Campomanesia pubescens (Mart. ex DC.) O.BERG (guavira) fruits: analysis of genotoxicity and clastogenic effects. Food & Function. 2018, 9, 3707–3717. https://doi.org/10.1039/C8FO01017J
WFC. Campomanesia sessiliflora (O.Berg) Mattos [WWW Document]. 2023, (accessed 12.25.23). URL http://www.worldfloraonline.org/taxon/wfo-0000793990.
WHO. WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. Geneva: WHO, 2004.
YADAV, A., MANDAL, M.K., DUBEY, K.K. In Vitro Cytotoxicity Study of Cyclophosphamide, Etoposide and Paclitaxel on Monocyte Macrophage Cell Line Raw 264.7. Indian Journal of Microbiology. 2020, 60, 511–517. https://doi.org/10.1007/s12088-020-00896-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anahy Arruda Burigato, Jacenir Vieira da Silva, Larissa Pires Mueller, Flávio Henrique Souza de Araújo, Cláudia Andréa Lima Cardoso, Roosevelt Isaías Carvalho Souza, Agruslávia Rezende de Souza, Felipe Francisco Bittencourt Junior, Silvia Aparecida Oesterreich
This work is licensed under a Creative Commons Attribution 4.0 International License.