Insecticidal potential of organic extracts of Calotropis procera to Spodoptera frugiperda

Authors

DOI:

https://doi.org/10.14393/BJ-v39n0a2023-63699

Keywords:

Biological Insecticide, Fall armyworm, Secondary metabolites, Silk cotton.

Abstract

This study evaluated the toxic effects of organic extracts of Calotropis procera leaves on the survival, development, and reproduction of Spodoptera frugiperda. Solutions of crude methanol extract and hexane and methanol fractions of C. procera leaves were added at 1.15% and 2.14% concentrations to the artificial diet of S. frugiperda. The mortality and duration of larval and pupal phases, weights of female and male pupae, deformations of pupae and adults, the reduction of adults able to reproduce, pre-oviposition and oviposition periods, the number of postures per female, and the fecundity and fertility of S. frugiperda females were also evaluated. The extracts harmed the survival, development, and reproduction of S. frugiperda. The ingestion of extracts and fractions by caterpillars affected adults by decreasing the oviposition period, the number of postures, fecundity, and fertility. The crude MeOH extract at a 2.14% concentration harmed the evaluated parameters of the insect, except for pupal mortality, female pupae weight, and pre-oviposition period. The MeOH fraction at 2.14% caused a 50.0% mortality of caterpillars and 16.0% deformation in pupae and 33.0% in adults, reducing by 72.0% the population able to reproduce. The MeOH fraction at the 2.14% concentration caused 25.0% and 38.0% of pupal mortality and deformation, respectively. Calotropis procera has promising insecticidal properties for a biological insecticide, a convenient and sustainable strategy for protecting plants against S. frugiperda.

 

Downloads

Download data is not yet available.

References

ADEYEMI, M.M.H. The potential of secondary metabolites in plant material as deterents against insect pests: a review. African Journal of Pure and Applied Chemistry. 2010, 4 (11), 243–246. https://doi.org/10.5897/AJPAC.9000168

AHMED, U.A.M., et al. Evaluation of insecticidal potentialities of aqueous extracts from Calotropis procera Ait. against Henosepilachna elaterii Rossi. Journal of Applied Sciences. 2006, 6 (11), 2466-2470. https://doi.org/10.3923/jas.2006.2466.2470

ANDRADE, M.V.M., et al. Fenologia da Calotropis procera Ait R. Br., em função do sistema e da densidade de plantio. Archivos de Zootecnia. 2005, 54 (208), 631-634.

ARYA, H., SINGH, B.R. and SINGH, K. Insecticidal activity of Calotropis procera leaves against mustard aphid Lipaphis erysimi (kalt) and its natural predator Coccinella septempunctata (Linn). Research Journal of Chemical and Environmental Sciences. 2016, 4 (5), 53-55.

BAKAVATHIAPPAN, G., et al. Effect of Calotropis procera leaf extract on Spodoptera litura (Fab.). Journal of Biopesticides. 2012, 5(Supplementary), 135-138.

BEGUM, N., SHARMA, B. and PANDEY, R.S. Evaluation of insecticidal efficacy of Calotropis procera and Annona squamosa ethanol extracts against Musca domestica. Journal of Biofertilizers and Biopesticides. 2010, 1 (1), 1-6. https://doi.org/10.4172/2155-6202.1000101

BHUTANI, K.K., GUPTA, D.K. and KAPIL, R.S. Occurrence of D/E trans stereochemistry isomeric to ursane (cis) series in a new pentacyclic triterpene from Calotropis procera. Tetrahedron Letters. 1992, 33 (49), 7593-7596. https://doi.org/10.1016/S0040-4039(00)60833-X

BOULOGNE, I., et al. Insecticidal and antifungal chemicals produced by plants: A review. Environmental Chemistry Letters. 2012, 10 (4), 325-347. https://doi.org/10.1007/s10311-012-0359-1

CECHINEL FILHO, V. and YUNES, R.A. Estratégias para a obtenção de compostos farmacologicamente ativos a partir de plantas medicinais: conceitos sobre modificação estrutural para otimização da atividade. Química Nova. 1998, 21 (1), 99-105. https://doi.org/10.1590/S0100-40421998000100015

CHAIEB, I. Saponins as insecticides: a review. Tunisian Journal of Plant Protection. 2010, 5 (1), 39-50.

CHUNDATTU, S. J., AGRAWAL, V. K. and GANESH, N. Phytochemical investigation of Calotropis procera. Arabian Journal of Chemistry. 2016, 9 (1), 230-234. https://doi.org/10.1016/j.arabjc.2011.03.011

CRUZ, C.D. Programa Genes: Biometria. Viçosa/MG. Editora UFV, 2013.

DAY, R., et al. Fall Armyworm: Impacts and Implications for Africa. Outlooks on Pest Management. 2017, 28 (5), 196-201. https://doi.org/10.1564/v28_oct_02

DAYAN, F.E., CANTRELL, C.L. and DUKE, S.O. Natural products in crop protection. Bioorganic & Medicinal Chemistry. 2009, 17 (12), 4022-4034. https://doi.org/10.1016/j.bmc.2009.01.046

FARIAS, J.R., et al. Geographical and temporal variability in susceptibility to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. Journal of Economic Entomology. 2014, 107 (6), 2182-2189. https://doi.org/10.1603/EC14190

FELDMANN, F., RIECKMANN, U. and WINTER, S. The spread of the fall armyworm Spodoptera frugiperda in Africa—What should be done next? Journal of Plant Diseases and Protection. 2019, 126 (2), 97-101. https://doi.org/10.1007/s41348-019-00204-0

FERREIRA, D.F. Sisvar: a computer Statistical analysis system. Ciência e Agrotecnologia. 2011, 35 (6), 1039-1042. https://doi.org/10.1590/S1413-70542011000600001

GREENE, G.L., LEPPLA, N.C. and DICKERSON, W.A. Velvet bean caterpillar: a rearing procedure and artificial medium. Journal of Economic Entomology. 1976, 69 (4), 488-497. https://doi.org/10.1093/jee/69.4.487

HANNA, A.G., et al. Structure of a calotropagenin derived artifact from Calotropis procera. Magnetic Resonance in Chemistry. 2002, 40 (9), 599-602. https://doi.org/10.1002/mrc.1057

HENEIDAK, S., et al. Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, Subfamily Asclepiadoideae). Biochemical System and Ecology. 2006, 34 (7), 575-584. https://doi.org/10.1016/j.bse.2006.03.001

HORKOSHI, R.J., et al. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management. Scientific Reports. 2016, 6 (1), 34864. https://doi.org/10.1038/srep34864

JADHAV, D., et al. Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction. Journal of Food Engineering. 2009, 93 (4), 421-426. https://doi.org/10.1016/j.jfoodeng.2009.02.007

JEGER, M., et al. Pest categorisation of Spodoptera frugiperda. EFSA Journal. 2017, 15 (7), e04927. https://doi.org/10.2903/j.efsa.2017.4927

KHAN, S. A., et al. Insecticidal efficacy of wild medicinal plants, Dhatura alba and Calotropis procera, against Trogoderma granarium (Everts) in wheat store Grains. Pakistan Journal of Zoology. 2018, 51 (1), 289-294. https://doi.org/10.17582/journal.pjz/2019.51.1.289.294

KOUL, O. Biological Activity of Volatile Di-n-Propyl Disulfide from Seeds of Neem, Azadirachta indica (Meliaceae), to Two Species of Stored Grain Pests, Sitophilus oryzae (L.) and Tribolium castaneum (Herbst). Journal of Economic Entomology. 2004, 97 (3), 1142–1147. https://doi.org/10.1093/jee/97.3.1142

LALL, D., et al. Larvicidal effects of leaf powder of Calotropis procera and Argimone mexicana against 4th instar of american boll warm, Helicoverpa Armigera (Hubner) (Noctuidae: Lepidoptera). International Proceedings of Chemical, Biological and Environmental Engineering. 2013, 60 (24), 122-125. https://doi.org/10.7763/IPCBEE

LARHSINI, M., et al. Evaluation of antifungal and molluscicidal properties of extracts of Calotropis procera. Fitoterapia. 1997, 68 (4), 371-373.

MELLO, M.M., et al. Estudo fitoquímico da Calotropis procera Ait., sua utilização na alimentação de caprinos: efeitos clínicos e bioquímicos séricos. Revista Brasileira de Saúde e Produção Animal. 2001, 2 (1), 15-20.

MOVVA, V. and PATHIPATI, U.R. Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. Larval growth and physiology. Archives of Insect Biochemistry and Physiology. 2017, 95 (1), e21387. https://doi.org/10.1002/arch.21387

MURTI, Y., YOGI, B. and PATHAK, D. Pharmacognostic standardization of leaves of Calotropis procera (Ait.) R. Br. (Asclepiadaceae). International Journal of Ayurveda Research. 2010, 1 (1), p. 14-17. https://doi.org/10.4103/0974-7788.59938

OMOTO, C., et al. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Management Science. 2016, 72 (9), 1727-1736. https://doi.org/10.1002/ps.4201

RAMOS, M.V., et al. Performance of distinct crop pests reared on diets enriched with latex proteins from Calotropis procera: Role of laticifer proteins in plant defense. Plant Science. 2007, 173 (3), 349–357. https://doi.org/10.1016/j.plantsci.2007.06.008

SALUNKE, B.K., et al. Efficacy of flavonoids in controlling Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), a post-harvest pest of grain legumes. Crop Protection. 2005, 24 (10), 888-893.

SHRIVASTAVA, A., SINGH, S. and SINGH, S. Phytochemical investigation of different plant parts of Calotropis procera. International Journal of Scientific and Research Publications. 2013, 3 (8), 1-4.

SILVA, H. D., et al. Bioatividade dos extratos aquosos de plantas às larvas da mosca-das-frutas, Ceratitis capitata (Wied.). Arquivos do Instituto Biológico. 2015, 82, 1-4. https://doi.org/10.1590/1808-1657000132013

SILVA, D.M., et al. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola. 2017, 74 (1), 18-31. https://doi.org/10.1590/1678-992x-2015-0160

SINGHI, M.V., JOSHI, R.C. and SHARMA, K.S. Oviposition behavior of Aedes aegypti in different concentrations of latex of Calotropis procera: Studies on refractory behavior and its sustenance across gonotrophic cycles. Dengue Bulletin. 2004, 28, 184-188.

SRIVASTAVA, N., CHAUHAN, A.S. and SHARMA, B. Isolation and characterization of some phytochemicals from Indian traditional plants. Biotechnology Research International. 2012, e549850. https://doi.org/10.1155/2012/549850

STEPPUHN, A., et al. Nicotine's defensive function in nature. PLOS Biology. 2004, 2 (8), e217. https://doi.org/10.1371/journal.pbio.0020217

STEPPUHN, A. and BALDWIN, I.T. Resistance management in a native plant: Nicotine prevents herbivores from compensating for plant protease inhibitors. Ecology Letters. 2007, 10 (6), 499-511. https://doi.org/10.1111/j.1461-0248.2007.01045.x

TAPONDJOU, L. A., et al. Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. Journal of Stored Products Research. 2002, 38 (4), 395-402. https://doi.org/10.1016/S0022-474X(01)00044-3

TEAM ESTATCAMP (2014). Software Action. Estatcamp - Consultoria em estatística e qualidade, São Carlos - SP, Brasil. URL: http://www.portalaction.combr/

Downloads

Published

2023-04-06

How to Cite

SOUZA, T.A.N. de, ALVARENGA, C..D., SOARES, D..P. and GIUSTOLIN, T.A., 2023. Insecticidal potential of organic extracts of Calotropis procera to Spodoptera frugiperda. Bioscience Journal [online], vol. 39, pp. e39025. [Accessed22 November 2024]. DOI 10.14393/BJ-v39n0a2023-63699. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/63699.

Issue

Section

Agricultural Sciences