Potential of Tetradenia riparia leaf essential oil and its fractions in controlling Aedes aegypti and Rhipicephalus microplus larvae





Acetylcholinesterase, Cattle tick, Dengue mosquito, False myrrh.


Tetradenia riparia (Hochst.) Codd (Lamiaceae) is a shrub, commonly known as ginger bush or false myrrh, and several studies have shown that T. riparia exhibits a variety of biological properties. This study aimed to determine the chemical composition of T. riparia essential oil and its fractions, investigate their anticholinesterase activity, and assess their larvicidal activity against the cattle tick Rhipicephalus microplus and the mosquito Aedes aegypti. Eleven essential oil fractions were obtained by fractionation and analyzed by gas chromatography/mass spectrometry. Larvicidal activity against R. microplus and third-instar A. aegypti was assessed using a larval packet test and a larval immersion test, respectively. Anticholinesterase activity was determined by a bioautographic method. Forty-nine compounds were identified in the essential oil, of which the major classes were oxygenated sesquiterpenes (45.95%) and sesquiterpene hydrocarbons (35.20%) and the major components were isospathulenol (17.40%), β-caryophyllene (15.61%), 14-hydroxy-9-epi-caryophyllene (10.07%), 14-hydroxy-α-muurolene (8.32%), and 9β,13β-epoxy-7-abietene (5.53%). Bioassays showed that T. riparia essential oil (LC50 = 1.56 µg/mL) and FR3 (LC50 = 0.30 µg/mL) were the most active against R. microplus and A. aegypti larvae, respectively. The essential oil and FR1, FR2, and FR3 exhibited acetylcholinesterase inhibitory activity. These results indicate that T. riparia essential oil and its fractions hold promise in the development of novel, environmentally safe agents for the control of R. microplus and A. aegypti larvae.


Download data is not yet available.


ADAMS, R.P. Identification of essential oil components by gas chromatography/mass spectroscopy. Carol Stream, IL, USA: Allured Publishing Corporation, 2017.

ARAÚJO, L.X., et al. Synergism of thymol, carvacrol and eugenol in larvae of the cattle tick, Rhipicephalus microplus, and brown dog tick, Rhipicephalus sanguineus. Medical and Veterinary Entomology. 2016, 30(4), 377-382. https://doi.org/10.1111/mve.12181

BANUMATHI, B., et al. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—a review. Veterinary Parasitology. 2017, 224(15), 102-110. https://doi.org/10.1016/j.vetpar.2017.07.021

BENSON, H.A.E. Transdermal drug delivery: Penetration enhancement techniques. Current Drug Delivery. 2005, 2, 23-33. https://doi.org/10.2174/1567201052772915

BORTOLUCCI, W.C., et al. Schinus terebinthifolius essential oil and fractions in the control of Aedes aegypti. Bioscience Journal. 2019, 35(5), 1575-1587. https://doi.org/10.14393/BJ-v35n5a2019-41999

BOTAS, G.D.S., et al. Baccharis reticularia DC. and limonene nanoemulsions: promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) Control. Molecules. 2017, 22(11), 1990. https://doi.org/10.3390/molecules22111990

BRAIN, K.R., et al. In-vitro human skin penetration of the fragrance material geranyl nitrile. Toxicology in Vitro. 2007, 21, 133-138. https://doi.org/10.1016/j.tiv.2006.08.005

CAMARGO, M.F., et al. Evaluation of the residual action of the larvicide Temephós over Aedes aegypti (Díptera-Culicidae) in different types of containers. Revista de Patologia Tropical. 1998, 27, 65-70. https://doi.org/10.1590/S0102-311X2002000600005

CAMPBELL, W.E., et al. Composition and antimalarial activity in vitro of the essential oil of Tetradenia riparia. Planta Medica. 1997, 63, 270-272. https://doi.org/10.1055/s-2006-957672

CARDOSO, B.M., et al. Antileishmanial activity of the essential oil from Tetradenia riparia obtained in different seasons. Memórias do Instituto Oswaldo Cruz. 2015, 110, 1024-1034. https://doi.org/10.1590/0074-02760150290

CAVALCANTI, S.C.H., et al. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresource Technology. 2010, 101, 829-832. https://doi.org/10.1016/j.biortech.2009.08.053

CHENG, S.S., et al. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresource Technology. 2003, 89, 99-102. https://doi.org/10.1016/S0960-8524(03)00008-7

CHENG, S.S., et al. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Management Science, 2008, 65, 339-343. https://doi.org/10.1002/ps.1693

COSTA, J.G.M., et al. Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Revista Brasileira de Farmacognosia. 2005, 15, 304-309. https://doi.org/10.1590/S0102-695X2005000400008

DAVIES-COLEMAN, M.T. and RIVETT, D.E.A. Structure of the 5,6-dihydro-α-pyrone, umuravumbolide. Phytochemistry. 1995, 38, 791-792. https://doi.org/10.1016/0031-9422(95)93874-F

DHINAKARAN, S.R., MATHEW, N. and MUNUSAMY, S. Synergistic terpene combinations as larvicides against the dengue vector Aedes aegypti Linn. Drug Development Research. 2019, 2019, 1-9. https://doi.org/10.1002/ddr.21560

DIAS, C.N. and MORAES, D.F. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitology Research. 2014, 113(2), 565‐592. https://doi.org/10.1007/s00436-013-3687-6

ELLSE, L. and WALL, R. The use of essential oils in veterinary ectoparasite control: a review. Medical and Veterinary Entomology. 2014, 28(3), 233‐243. https://doi.org/10.1111/mve.12033

FAO, Food and Agriculture Organization. Resistance management and integrated parasite control in ruminants – Guidelines, module 1 – Ticks: Acaricide resistance: Diagnosis, managements and prevention. Food and Agriculture Organization, animal production and health division, Rome. (p. 53), 2004.

FERNANDEZ, C.M.M., et al. Larvicidal activity of essential oil from Tetradenia riparia to control of Aedes aegypti larvae in function of season variation. Journal of Essential Oil Bearing Plants. 2014, 17, 813-823. https://doi.org/10.1080/0972060X.2014.892841

FERNANDEZ, A.C.A.M., et al. Antimicrobial and antioxidant activities of the extract and fractions of Tetradenia riparia (Hochst.) Codd (Lamiaceae) leaves from Brazil. Current Microbiology. 2017, 74(12), 1453-1460. https://doi.org/10.1007/s00284-017-1340-9

GAZIM, Z.C., et al. Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of Tetradenia riparia (Hochst.) Codd. in Southern Brazil. Molecules. 2010, 15, 5509-5524. https://doi.org/10.3390/molecules15085509

GAZIM, Z.C., et al. Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari; Ixodidae). Experimental Parasitology. 2011, 129, 175-178. https://doi.org/10.1016/j.exppara.2011.06.011

GAZIM, Z.C., et al. New natural diterpene-type abietane from Tetradenia riparia essential oil with cytotoxic and antioxidant activities. Molecules. 2014, 19, 514-524. https://doi.org/10.3390/molecules19010514

GOVINDARAJAN, M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pacific Journal of Tropical Medicine. 2010, 3(11), 874-877. https://doi.org/10.1016/S1995-7645(10)60210-6

GOVINDARAJAN, M., RAJESWARY, M. and BENELLI, G. δ-Cadinene, Calarene and δ-Carene from Kadsura heteroclita essential oil as novel larvicides against Malaria, Dengue and Filariasis Mosquitoes. Combinatorial Chemistry & High Throughput Screening. 2016, 19(7), 565-571. https://doi.org/10.2174/1386207319666160506123520

GRISI, L., et al. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária. 2014, 23, 150-156. https://doi.org/10.1590/S1984-29612014042

KASUMOTO, N., et al. Antitermitic activities of abietane-type diterpenes from Taxodium distichum cones. Journal of Chemical Ecology. 2009, 35, 635-642. https://doi.org/10.1007/s10886-009-9646-0

KIM, E.H., et al. Acaricidal activity of clove bud oil compounds against Tyrophagus putrescentiae (Acari: Acaridae). Applied Entomology and Zoology. 2003, 38(2), 261-266. https://doi.org/10.1303/aez.2003.261

KIRAN, S.R. and DEVI, P.S. Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitology Research. 2007, 101, 413-418. https://doi.org/10.1007/s00436-007-0485-z

LEITE, R.C., et al. Eficácia de Doramectin contra infestações naturais de Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae) em bovinos. Revista Brasileira de Parasitologia Veterinária. 1995, 4(1), 53-56.

LORENZI, H. and SOUZA, H.M. Plantas Ornamentais no Brasil – arbustivas, herbáceas e trepadeiras. Nova Odessa, SP: Instituto Plantarum, 1999.

MANJARRES-SUAREZ, A. and OLIVERO-VERBEL, J. Chemical control of Aedes aegypti: a historical perspective. Revista Costarricense de Salud Pública. 2013, 22(1), 68-75.

MARSTON, A., KISSLING, J. and HOSTETTMANN, K.A. A rapid TLC bioautography method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochemical Analysis. 2002, 13, 51-54. https://doi.org/10.1002/pca.623

MARTINS, M.B.G., MARTINS, R.G. and CAVALHEIRO, J.A. Chemical and antibacterial study of Tetradenia riparia leaves. Revista Biociências. 2008, 14, 127-140. https://doi.org/10.1590/S1517-838246246220140649

MORAIS, L.A.S. Influência dos fatores abióticos na composição química dos óleos essenciais. Horticultura Brasileira. 2009, 27, 4050-4063.

MUTURI, E.J., et al. Honeysuckle essential oil as a potential source of ecofriendly larvicides for mosquito control. Pest Management Science. 2019, 75(7), 2043-2048. https://doi.org/10.1002/ps.5327

OH, M.S., et al. Acaricidal activities of β-caryophyllene oxide and structural analogues derived from Psidium cattleianum oil against house dust mites. Pest Management Science. 2014, 70, 757-762. https://doi.org/10.1002/ps.3608

OLIVEIRA, H.L.M., et al. Bioinsecticide potential of Curcuma zedoaria rhizome essential oil. Bioscience Journal. 2019, 35(4), 1-12. https://doi.org/10.14393/BJ-v35n4a2019-42012

OMOLO, M.O., et al. Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochemistry. 2004, 65, 2797-2802. https://doi.org/10.1016/j.phytochem.2004.08.035

PALMER-YOUNG, E.C., et al. The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses. PLoS ONE. 2015, 10(6), e0127296. https://doi:10.1371/journal. pone.0127296

PAHO / WHO. Pan American Health Organization / World Health Organization. Epidemiological Update: Dengue. (7 February 2020), Washington, D.C. 2020.

PERUMALSAMY, H., KIM, N-J. and AHN, Y-J. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). Journal of Medical Entomology. 2009, 46(6), 1420-1423. https://doi.org/10.1603/033.046.0624

VALMORBIDA, J., et al. Yield and chemical composition of the essential oils from Mentha piperita L. cultivated in nutrient solution with different potassium concentrations. Revista Brasileira de Plantas Medicinais. 2006, 8, 56-61. https://doi.org/10.1590/S1677-04202005000400002

VAN PUYVELDE, L., et al. 1’, 2’ –Dideacetylboronolide and α-pyrone from Iboza riparia. Phytochemistry. 1981, 20, 2753-2755. https://doi.org/10.1016/0031-9422(81)85280-6

VAN PUYVELDE, L., et al. Active principles of Tetradenia riparia. Antimicrobial activity of 8(14),15-sandaracopamaradiene-7α,18-diol. Journal of Ethnopharmacology. 1986, 17, 269-275. https://doi.org/10.1016/0378-8741(86)90115-7

VAN PUYVELDE, L., et al. Active principles of Tetradenia riparia II. Antispasmodic activity of 8 (14), 15- sandaracopimaradiene-7-α,18-diol. Planta Medica. 1987, 52, 156-158. https://doi.org/10.1055/s-2006-962660

VAN PUYVELDE, L., NTAWUKILIYAYO, J.D. and PORTAELS, F. In vitro inhibition of mycobacteria by Rwandese medicinal plants. Phytotherapy Research. 1994, 8, 65-69. https://doi.org/10.1002/ptr.2650080202

VAN PUYVELDE, L. and DE KIMPE, N. Tetradenolide, an α-Pirone from Tetradenia riparia. Phytochemistry. 1998, 49, 1157-1158. https://doi.org/10.1016/S0031-9422(98)00112-5

WARE, G.W. AND WHITACRE, D.M. An introduction to insecticides. 3rd ed. University of Minnesota, 2000.

WEAVER, D.K., et al. Toxicity and protectant potential of the essential oil of Tetradenia riparia (Lamiales, Lamiaceae) against Zabrotes subfasciatus (Col., Bruchidae) infesting dried pinto beans (Fabales, Leguminosae). Journal of Applied Entomology. 1994, 118, 179-196. https://doi.org/10.1111/j.1439-0418.1994.tb00793.x

YANG, Z., et al. Modified TLC bioautographic method for screening acetylcholinesterase inhibitors from plant extracts. Journal of Separation Science. 2009, 32, 3257-3259. https://doi.org/10.1002/jssc.200900266

ZARA, A.L.S.A., et al. Aedes aegypti control strategies: a review. Epidemiologia e Serviços de Saúde. 2016, 25(2), 391-404. https://doi.org/10.5123/S1679-49742016000200017

ZELNIK, R., et al. Ibozol, a new diterpenoid from Iboza riparia. Phytochemistry, 1978, 17, 1795-1797. https://doi.org/10.1016/S0031-9422(00)88701-4




How to Cite

FERARRESE, L., DE OLIVEIRA, H.L.M., DE OLIVEIRA, G.S., MENDONÇA, J.A., CELLA, W., DE LUCA NETO, M., INUMARO, R.S., FERREIRA, L.R. de P., PERFEITO, H.L. dos S., JACOMASSI, E., GONÇALVES, J.E., PIAU JUNIOR, R., GONÇALVES, D.D., FERNANDEZ , C.M.M. and GAZIM, Z.C., 2023. Potential of Tetradenia riparia leaf essential oil and its fractions in controlling Aedes aegypti and Rhipicephalus microplus larvae. Bioscience Journal [online], vol. 39, pp. e39026. [Accessed26 March 2023]. DOI 10.14393/BJ-v39n0a2023-63187. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/63187.



Agricultural Sciences