Atmospheric evaporative demand and water deficit on the ecophysiology of Rubber seedlings
DOI:
https://doi.org/10.14393/BJ-v38n0a2022-62906Keywords:
Climate variability, Natural rubber, Photosynthesis rates, Tropical tree species, Water use efficiency.Abstract
The search for genetic materials resistant to adverse weather conditions has been a major focus in studies on species of economic interest. The objective of the present study was to assess the growth and photosynthesis of rubber seedlings clones under two conditions of atmospheric evaporative demand, characterized by fluctuations in temperature (TEMP) and vapor pressure deficit (VPD), associated to two water regimens. Hevea brasiliensis Muell. Arg (RRIM 600 and FX 3864) clones were assessed in two microclimates, at low (TEMP 21.2 ºC and VPD 0.29 Kpa) and high (TEMP 26.9 ºC and VPD 1.49 Kpa) atmospheric evaporative demand, under two water regimens: water deficit and well-watered. Water deficit 50% water availability was sufficient to reduce the net CO2 assimilation rate, leaf area and total chlorophyll of the clones studied that impacted growth in both microclimates. The effects of water deficit on growth and net carbon assimilation rate were intensified under high atmospheric evaporative demand. However, when comparing the two clones studied, RRIM 600 showed greater growth and photosynthesis without water restriction. The FX 3864 clone, despite the high CO2 assimilation values under high atmospheric demand and without water restriction, showed a reduced growth. The results of this study form an important basis for the selection of genotypes with the potential to develop in adverse climatic conditions. In this sense, the RRIM 600 genotype is recommended as a promising material that would best adapt under adverse climatic conditions.
Downloads
References
AMARAL, G.C., et al. Ecophysiology of Pilocarpus microphyllus in response to temperature, water availability and vapour pressure deficit. Trees. 2021, 35(2), 543-555. https://doi.org/10.1007/s00468-020-02055-x
ASHARAF, M. and HARRIS, P.J.C. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013, 51(2), 163-190. https://doi.org/10.1007/s11099-013-0021-6
ATAÍDE, W., et al. Growth and gas exchange of Tachigali vulgaris submitted to water deficiency. Revista de Ciências Agrárias. 2018, 41(3), 771-782. https://doi.org/10.19084/RCA17231
AYUTTHAYA, S.I.N., et al. Water loss regulation in mature Hevea brasiliensis: effects of intermittent drought in the rainy season and hydraulic regulation. Tree physiology. 2011, 31(7), 751-762. https://doi.org/10.1093/treephys/tpr058
CAMARGO, A.P., MARIN, F.R. and CAMARGO, M.B.P. Zoneamento climático da Heveicultura no Brasil. Embrapa Territorial-Documentos. 2003.
CENTURION, J.F. and ANDREOLI, I. Regime hídrico de alguns solos de Jaboticabal. Revista Brasileira de Ciência do Solo. 2000, 24, 701-709.
CHEN, J.W., et al. Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery. Tree Physiology. 2010, 30(7), 876-885. https://doi.org/10.1093/treephys/tpq043
Companhia Nacional de Abastecimento (CONAB). Boletim da Sociobiodiversidade. Conab. 2021, 3(1), 1-48.
COSTA, E.M., et al. Effect of Leaf Sun Protector on Initial Growth of Khaya senegalensis under Water Deficiency in Different Microclimatic Conditions. Journal of Experimental Agriculture International. 2018, 22(5), 1-7. https://doi.org/10.9734/JEAI/2018/40396
ESPINOZA, S.E., et al. Field performance of various Pinus radiata breeding families established on a drought-prone site in central Chile. New Zealand Journal of Forestry Science. 2017, 47(1), 1-7. https://doi.org/10.1186/s40490-017-0093-3
GAMA, V.N., et al. Ecophysiological responses of medium morphotype of Paubrasilia echinata (Lam.) Gagnon, H. C. Lima and G. P. Lewis raised under full sunlight and natural shade. Revista Árvore. 2020, 43(4), 1-7. https://doi.org/10.1590/1806-90882019000400007
GASPAROTTO, L., et al. Doenças da seringueira no Brasil. EMBRAPA-SPI/Manaus: EMBRAPA-CPAA. 2012.
KRISHNA, T.M., et al. Effect of irrigation on physiological performance of immature plants of Hevea brasiliensis in north Konkan. Indian Journal of Natural Rubber Research, Kottayam. 1991, 4(1), 36-45.
KUMAGAI, T.O., et al. How do rubber (Hevea brasiliensis) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia? Agricultural and Forest Meteorology. 2015, 213, 10-22. https://doi.org/10.1016/j.agrformet.2015.06.011
LIN, W., GUO, X., PAN, X. and LI, Z. Chlorophyll composition, chlorophyll fluorescence, and grain yield change in esl mutant rice. International journal of molecular sciences, 2018, 19(10), 2945. https://doi.org/10.3390/ijms19102945
LICTHENTHALER, H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology. 1987, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
LIEBEREI, R. South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Annals of botany. 2007, 100(6), 1125-1142. https://doi.org/10.1093/aob/mcm133
MATHUR, S., AGRAWAL, D. and JAJOO, A. Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology. 2014, 137, 116-126. https://doi.org/10.1016/j.jphotobiol.2014.01.010
MELO, L.A.D., et al. Estaquia e efeito da deficiência hídrica ou inundação sobre características morfoanatômicas de Cestrum axillare Vell. Ciência Florestal. 2017, 27(1), 325-337. https://doi.org/10.5902/1980509826471
NASCIMENTO, N.F., NASCIMENTO, L.B.B. and GONÇALVES, J.F.C. Respostas funcionais foliares de plantas jovens de Hevea brasiliensis submetidas à deficiência hídrica e à reidratação. Ciência Florestal. 2019, 29(3), 1019-1032. https://doi.org/10.5902/1980509832658
NÓIA JÚNIOR, R.D.S., et al. Ecophysiology of C3 and C4 plants in terms of responses to extreme soil temperatures. Theoretical and Experimental Plant Physiology. 2018, 30(3), 261-274. https://doi.org/10.1007/s40626-018-0120-7
PEREIRA, A.R., ANGELOCCI, L.R. and SENTELHAS, P.C. Agrometeorologia: fundamentos e aplicações práticas. 1th ed, Guaíba: Agropecuária, 2002.
SEVANTO, S., et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, cell & environment. 2014, 37(1), 153-161. https://doi.org/10.1111/pce.12141
SILVA, F.A.S. and AZEVEDO, C.A.V. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais. 2002, 4(1), 71-78.
SLOT, M. and WINTER, K. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Plant, Cell & Environment. 2017, 40(12), 3055-3068. https://doi.org/10.1111/pce.13071
STERLING, A., et al. Dynamics of photosynthetic responses in 10 rubber tree (Hevea brasiliensis) clones in Colombian Amazon: Implications for breeding strategies. PloS one. 2019, 14(12). https://doi.org/10.1371/journal.pone.0226254
SZYMAŃSKA, R., ŚLESAK, I., ORZECHOWSKA, A. and KRUK, J. Physiological and biochemical responses to high light and temperature stress in plants. Environmental and Experimental Botany. 2017, 139,165–177. https://doi.org/10.1016/j.envexpbot.2017.05.002
TAMARY, E., et al. Chlorophyll catabolism precedes changes in chloroplast structure and proteome during leaf senescence. Plant Direct, 2019, 3(3). https://doi.org/10.1002/pld3.127
TEIXEIRA, P.C., DONAGEMMA, G.K., FONTANA, A., and TEIXEIRA, W.G. Manual de métodos de análise de solos. 2th ed. Brasília: Embrapa. Rio de Janeiro, 2017.
WAY, D.A., OREN, R.A.M. and KRONER, Y. The space‐time continuum: the effects of elevated CO 2 and temperature on trees and the importance of scaling. Plant, cell & environment. 2015, 38(6), 991-1007. https://doi.org/10.1111/pce.12527
WANG, B., et al. Nitrogen addition alters photosynthetic carbon fixation, allocation of photoassimilates, and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia. Agricultural and Forest Meteorology. 2019, 279, 107743. https://doi.org/10.1016/j.agrformet.2019.107743
XAVIER, T.M.T., PEZZOPANE, J.E.M., PENCHEL, R.M. and PEZZOPANE, J.R.M. Uso de fotoprotetor foliar em mudas de eucalipto em condição de deficit hídrico. Revista Brasileira de Agricultura Irrigada. 2018, 12(2), 2418 – 2429. https://doi.org/10.7127/rbai.v12n200723
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Erilva Machado Costa, José Eduardo Macedo Pezzopane, Sandro Dan Tatagiba, Talita Miranda Teixeira Xavier, Rogério de Souza Nóia Júnior, Daniel Salgado Pifano, Jullyanna Nair de Carvalho
This work is licensed under a Creative Commons Attribution 4.0 International License.