Multiline aiming at phenotypic stability and rice blast resistance

Authors

DOI:

https://doi.org/10.14393/BJ-v38n0a2022-59610

Keywords:

Oryza sativa, Pyricularia grisea, Plant Breeding, Varietal Mixture

Abstract

This study aimed to verify the efficiency of multilines in reducing blast progress and their potential benefits to phenotypic stability in rice. The experiments were conducted in the 2016/17 and 2017/18 agricultural years. A randomized block design was performed with three replications, evaluating 12 lines and a multiline, which consisted of five lines from the Cultivation and Use Value (CUV) test. The multiline presented an estimated grain yield above the average of experiments of around seven bags ha-1 and superior performance in early flowering, justifying the high phenotypic stability for these characters. In this case, the line selection for composing the multiline was favorable and efficient, highlighted by a higher agronomic performance than most lines of the CUV test. The multiline is an adequate strategy to provide higher phenotypic stability and reduce blast progress in the field.

Downloads

Download data is not yet available.

References

AKIHAMA, T., et al. Inheritance of the competitive ability and effects of its selection on agronomic characters. Japanese Journal of Breeding, 1968, 18(1), 12-14. https://doi.org/10.1270/jsbbs1951.18.12

BHAN, M.K., et al. GGE biplot analysis of oil Yield in lemongrass (Cymbopogon spp.). Journal of New Seeds, 2005, 7(2), 127-139. https://doi.org/10.1300/J153v07n02_07

BOTELHO, F.B.S., et al Multiline as a Strategy to Reduce Damage Caused by Colletotrichum lindemuthianum in Common Bean. Journal of Phytopathology, 2011, 159, 175-180. https://doi.org/10.1111/j.1439-0434.2010.01743.x

BOTELHO, F.B.S., et al. Melhoramento genético do arroz em Minas Gerais: avanços e perspectivas. In: Arroz: do campo à mesa. Informe Agropecuário, EPAMIG. 39(301), 2018.

BROWNING, J.A. and FREY, K.J. Multiline cultivars as a means of disease control. Annual Review Phytopathology, Danvers, 1969, 14, 355-382. https://doi.org/10.1146/annurev.py.07.090169.002035

CASTRO, A. Cultivar Mixtures. The Plant Health Instructor, St. Paul, 2001.

CAVATTE, P.C., SILVA, L.H., and DE SOUZA MACHADO, C.L. Fisionômica e a resistência de plantas a estresse bióticos. Tópicos Especiais em Genética e Melhoramento II. cap. 4, p. 64, 2018.

Companhia Nacional de Abastecimento (CONAB). 2018. Perspectivas para a agropecuária: safra 2019. Brasília, v. 1, p. 1-154.

CRUZ, C.D. and CASTOLDI, F. Decomposição da interação genótipos x ambientes em partes simples e complexa. Revista Ceres, 1991, 38, 422-430.

CRUZ, C.D., REGAZZI, A.J. and CARNEIRO, P.C.S. Modelos biométricos aplicados ao Melhoramento Genético. 3ªed. Viçosa, Editora UFV. 585p, 2004.

FAOSTAT. Food and Agriculture Organization of the United Nations. Statistical databases, 2016. Available from: http://faostat.fao.org/site/339/default.aspx

GIZLICE, Z., et al. Partitioning of blending ability using two-way blends and component lines of soybean. Crop science, 1989, 29(4), 885-889. https://doi.org/10.2135/cropsci1989.0011183X002900040008x

IRRI. International Rice Research Institute. Standard Evaluation System for Rice. Manila, 52 p, 1996.

JENNINGS, P.R. and HERRERA, R.M. Studies on competition in rice II. Competition in segregating populations. Evolution, 1968, 22(2), 332-336. https://doi.org/10.2307/2406532

MORAIS JÚNIOR, O.P., et al. Variabilidade genética durante quatro ciclos de seleção recorrente em arroz. Pesquisa Agropecuária Brasileira, 2017, 52(11), 1033-1041. https://doi.org/10.1590/s0100-204x2017001100009

MUNDT, C.C., et al. Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 2002, 40, 381–410. https://doi.org/10.1146/annurev.phyto.40.011402.113723

NAKAJIMA, T., et al. Factors Related to suppression of leaf blast disease with a multiline of rice cultivar Sasanishiki and its isogenic lines. Annals of the Phytopathological Society of Japan, Tokyo, 1996, 62, 360-364. https://doi.org/10.3186/jjphytopath.62.360

NUNES, J.A.R., RAMALHO, M.A.P and ABREU, A.de.F.B. Graphical method in studies of adaptability and stability of cultivars. Annual Report of Bean Improvement Cooperative, Fort Collins, 2005, 48, 182-183.

PIMENTEL-GOMES, F. Curso de estatística experimental. 15. ed. Piracicaba: FEALQ, 451 p, 2009.

PRABHU, A.S. and FILIPPI, M.C. Graus de resistência à brusone e produtividade de cultivares melhoradas de arroz de terras altas. Pesquisa Agropecuária Brasileira, Brasília, 2001, 36(12), 1453-1459. https://doi.org/10.1590/S0100-204X2001001200002

RABOIN, L.M., et al. Two-component cultivar mixtures reduce rice blast epidemics in an upland agrosystem. Plant Pathology Journal, 2012, 1-9. https://doi.org/10.1111/j.1365-3059.2012.02602.x

RAMALHO, M.A.P., et al. Aplicações da genética quantitativa no melhoramento de plantas autógamas. Lavras: Editora UFLA, 522p, 2012.

RESENDE, M.D.V. de and DUARTE, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, Goiânia, 2007, 3(37), 182- 194.

RODRÍGUEZ, R.E.S., RANGEL, P.H.N. and MORAIS, O.P. Estimativas de parâmetros genéticos e de respostas à seleção na população de arroz irrigado CNA 1. Pesquisa Agropecuária Brasileira, Brasília, 1998, 33(5), 685-691.

SANTOS, G.R.D., et al. Selection of rice genotypes to integrate a varietal mixture for blast control. Summa Phytopathologica, 2017, 43(4), 290-296. https://doi.org/10.1590/0100-5405/2161

TRETHOWAN, R.M., et al. Relationships among bread wheat international yield testing locations in dry areas. Crop Science, 2001, 41(5), 1461-1469. https://doi.org/10.2135/cropsci2001.4151461x

WOLFE, M.S., et al. Crop strength through diversity. Nature, London, 2000, 406 (6797), 681-682.

YAN, W. Cultivar evaluation and megaenvironment investigation based on the GGE biplot. Crop Science, Madison, 2000, 40(3), 597-605. https://doi.org/10.2135/cropsci2000.403597x

YAN, W. and KANG, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, 2003.

YAN, W. and TINKER, A. Biplot analysis of multi environment trial data: principles and applications. Canadian Journal of Plant Science, 2006, 86(3), 623-645. https://doi.org/10.4141/P05-169

ZHU, Y., et al. Genetic diversity and disease control in rice. Nature, London, 2000, 406, 718-722. https://doi.org/10.1038/35021046

ZHU, Y.Y., et al. Panicle blast and canopy moisture in rice cultivar mixtures. Phytopathology, 2005, 95(4), 433-438. https://doi.org/10.1094/PHYTO-95-0433

Downloads

Published

2022-12-16

How to Cite

CASTRO, D.G., MOURA, A.M. de, ALVES, N.B., TOMÉ, L.M., BOTELHO, F.B.S., NETO, A.R. and SOUZA, D.C. de, 2022. Multiline aiming at phenotypic stability and rice blast resistance. Bioscience Journal [online], vol. 38, pp. e38100. [Accessed16 September 2024]. DOI 10.14393/BJ-v38n0a2022-59610. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/59610.

Issue

Section

Agricultural Sciences