Biofertilizer and reduction of water losses in soil cultivated with tomato irrigated with moderately saline water


  • Rossana Carla Montenegro de Vasconcelos Universidade Federal da Paraíba
  • Lourival Ferreira Cavalcante Universidade Federal da Paraíba
  • Antônio Gustavo de Luna Souto Universidade Federal da Paraíba
  • Adriana Araújo Diniz Universidade Estadual do Maranhão
  • Antonio João de Lima Neto Universidade Federal do Ceará
  • Tony Andresson Guedes Dantas Instituto Federal de Educação, Ciência e Tecnologia do Ceará



Organic Input, Plastic Film, Solanum lycopersicum L. , Water Salinity.


In semi-arid regions, agricultural production is often limited due to scarcity and rainfall irregularities, and, therefore, the production system depends on irrigation. In this direction, the research aimed to evaluate the influence of the reduction of water losses in the soil through the coating of the lateral faces of the planting furrows with plastic film, by lateral infiltration of water and bovine biofertilizers for growth in height, production, and chlorophyll responses of tomato cv. Fascínio F1 irrigated with moderately saline water. The experiment was carried out in randomized blocks, in a 2 × 3 factorial scheme, with 4 replicates and 21 plants per plot. Different conditions were used and compared with each other: the furrow had side coating or not, and the soil received a common biofertilizer (fresh lactating bovine manure), chemically enriched fertilizer (common biofertilizer, milk, molasses, and gypsum), or no fertilizer at all. The variables evaluated were soil moisture, plant height, a, b, and total chlorophyll content, number and average fruit mass, tomato production, and productivity. The enriched bovine biofertilizer associated with the lateral furrow coating increased the synthesis of chlorophyll pigments, the number of fruits per plant, and the productivity of tomato cv. Fascínio F1. Protecting the faces of the furrows against water losses from the root environment of plants keeps the soil moist, stimulates the synthesis of chlorophyll, and increases the average mass of the fruits. The common bovine biofertilizer promotes greater growth in plant height, and the chemically enriched biofertilizer increases the average weight of tomato fruits.


Download data is not yet available.


AGIUS, C., et al. The effect of salinity on fruit quality and yield of cherry tomatoes. Horticulturae. 2022, 8, 59.

ALVARES, C.A., et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 2013, 22(6), 711-728.

ALVES, L.S., et al. Salinidade na água de irrigação e aplicação de biofertilizante bovino no crescimento e qualidade de mudas de tamarindo. Irriga. 2019, 24(2), 254-273.

ARNON, D. I. Copper enzymes in isolated chloroplasts: polyphenoloxidases in Beta vulgaris. Plant Physiology. 1949, 24(1), 1-15.

AYERS, R.S. and WESTCOT, D.W. A qualidade da água na agricultura. 2ª edition. Campina Grande, PB: Universidade Federal da Paraíba, 1999.

CAJAMARCA, S.M.N., et al. Heterogeneity in the chemical composition of biofertilizers, potential agronomic use, and heavy metal contents of different agro-industrial wastes. Sustainability. 2019, 11(7), 1-13.

CAVALCANTE, L.F., et al. Biofertilizers in horticultural crops. Comunicata Scientiae. 2019, 10(4), 415-428.

CAVALCANTE, L.F., et al. Produção do maracujazeiro-amarelo irrigado com água salina em covas protegidas contra perdas hídricas. Irriga. 2005, 10(3), 229-240.

DINIZ, A.A., et al. Leaf composition and productivity of yellow passion fruit (Passiflora edulis Sims.) Access “Guinezinho” in soil with bovine biofertilizer and nitrogen. Australian Journal of Crop Science. 2020, 14(1), 133-139.

DUKARE, A., et al. Plastic film and organic mulching increases rhizosphere microbial population, plant growth, and mineral uptake in low input grown tomato in the northwestern region of India. Journal of Plant Nutrition. 2021, 44(6), 814-828.

EL-BELTAGI, H.S., et al. Mulching as a sustainable water and soil saving practice in agriculture: A Review. Agronomy. 2022, 12(8),1881.

FERREIRA, D.F. Sisvar: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria. 2019, 37(4), 529-535.

GAMA, D.R.S., et al. Physiological indexes of mini tomato cultivars grown in a protected environment. Bioscience Journal, 2020, 36(5), 1507-1517.

GUO, S., et al. Fate and transport of urea-N in a rain-fed ridge-furrow crop system with plastic mulch. Soil & Tillage Research. 2019, 186(1), 214-223.

LICHTENTHALER, H.K. Chlorophylls and carotenoids: pigment photosynthetic biomembranes. Methods in Enzymology. 1987, 148(1), 362-385.

LIMA, F.A., et al. Yield of strawberry crops under different irrigation levels and biofertilizer doses. Revista Ciência Agronômica. 2018, 49, (3), 381-388.

LIMA NETO, A.J., et al. Biofertilizante bovino, cobertura morta e revestimento lateral dos sulcos na produção de pimentão. Revista Caatinga. 2013, 26 (3), 1-8.

LIMA NETO, A.J., et al. Biometric variables and photosynthetic pigments in tamarind seedlings irrigated with saline water and biofertilizers. Semina: Ciências Agrárias. 2018, 39 (5), 1909-1920.

LIMA NETO, A.J., et al. Productivity and photosynthetic pigments in bell pepper plants grown in soil with biofertilizer and protected against water loss. Revista Ceres. 2021, 68 (1), 39-46.

MALAVOLTA, E., VITTI, G.C. and OLIVEIRA, S.A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2ª edition. Piracicaba, SP: Potafos, 1997.

MATOS, R.M., et al. Organic fertilization as an alternative to the chemical in cherry tomato growing under irrigation depths. Bioscience Journal, 2021, 37, e37006.

MENDONÇA, S.A., et al. The effect of different mulching on tomato development and yield. Scientia Horticulturae. 2021, 275, 109657.

MESQUITA, F.O., et al. Saline water and bovine biofertilizer chemically enriched on jackfruit seedlings var. soft. Bioscience Journal. 2020, 36, (6), 1919-1929.

OLIVEIRA, CE.S., et al. Tolerance and adaptability of tomato genotypes to saline irrigation. Crops. 2022, 2, 306-322.

PAIVA, F.I.G., et al. Qualidade de tomate em função da salinidade da água de irrigação e relações K/Ca via fertirrigação. Irriga. 2018, 23 (1), 180-193.

PEREIRA, J.M., et al. Agronomic, physicochemical, and sensory characteristics of fruit of Biquinho pepper cultivated with liquid biofertilizer. Scientia Horticulturae. 2021, 288, 110348.

RICHARDS, L.A. Diagnosis and improvement of saline and alkali soils. 1ª edition. Washington, DC: USDA, 1954.

SALES, J.R.S., et al. Production and quality of okra fruits submitted to doses and types of biofertilizers. Journal of Agricultural Science. 2019, 11 (4), 507-514.

SANTANA, M.J., et al. Coeficientes de cultura para o tomateiro irrigado. Irriga. 2011, 16 (1), 11-20.

SANTOS, E.M., et al. Yield and quality of strawberry fruits fertilized with bovine biofertilizer. Revista Caatinga, 2019, 32, (1), 16-26.

SANTOS, H.G., et al. Sistema Brasileiro de Classificação de Solos. 5ª edition. Rio de Janeiro, RJ: Embrapa Solos, 2018.

SILVA, A.C.C., et al. Yield in tomato under two water depths and plastic mulching. Revista Brasileira de Ciências Agrárias. 2019, 14 (3), 1-6.

TEIXEIRA, P.C., et al. Manual de métodos de análise de solo. 3ª edition. Rio de Janeiro, RJ: Embrapa Solos, 2017.

ZHAO, Y., et al. Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau. Agricultural Water Management. 2018, 202 (1), 99-112.

ZÖRB, C., CHRISTOPH-MARTIN, G. and KARL-JOSEF, D. Salinity and crop yield. Plant Biology. 2019, 21(S1), 31-38.




How to Cite

VASCONCELOS, R.C.M. de, CAVALCANTE, L.F., SOUTO, A.G. de L., DINIZ, A.A., LIMA NETO, A.J. de and DANTAS, T.A.G., 2023. Biofertilizer and reduction of water losses in soil cultivated with tomato irrigated with moderately saline water. Bioscience Journal [online], vol. 39, pp. e39072. [Accessed25 July 2024]. DOI 10.14393/BJ-v39n0a2023-55575. Available from:



Agricultural Sciences