Biofertilizer and reduction of water losses in soil cultivated with tomato irrigated with moderately saline water
DOI:
https://doi.org/10.14393/BJ-v39n0a2023-55575Keywords:
Organic Input, Plastic Film, Solanum lycopersicum L. , Water Salinity.Abstract
In semi-arid regions, agricultural production is often limited due to scarcity and rainfall irregularities, and, therefore, the production system depends on irrigation. In this direction, the research aimed to evaluate the influence of the reduction of water losses in the soil through the coating of the lateral faces of the planting furrows with plastic film, by lateral infiltration of water and bovine biofertilizers for growth in height, production, and chlorophyll responses of tomato cv. Fascínio F1 irrigated with moderately saline water. The experiment was carried out in randomized blocks, in a 2 × 3 factorial scheme, with 4 replicates and 21 plants per plot. Different conditions were used and compared with each other: the furrow had side coating or not, and the soil received a common biofertilizer (fresh lactating bovine manure), chemically enriched fertilizer (common biofertilizer, milk, molasses, and gypsum), or no fertilizer at all. The variables evaluated were soil moisture, plant height, a, b, and total chlorophyll content, number and average fruit mass, tomato production, and productivity. The enriched bovine biofertilizer associated with the lateral furrow coating increased the synthesis of chlorophyll pigments, the number of fruits per plant, and the productivity of tomato cv. Fascínio F1. Protecting the faces of the furrows against water losses from the root environment of plants keeps the soil moist, stimulates the synthesis of chlorophyll, and increases the average mass of the fruits. The common bovine biofertilizer promotes greater growth in plant height, and the chemically enriched biofertilizer increases the average weight of tomato fruits.
Downloads
References
AGIUS, C., et al. The effect of salinity on fruit quality and yield of cherry tomatoes. Horticulturae. 2022, 8, 59. https://doi.org/10.3390/horticulturae8010059
ALVARES, C.A., et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 2013, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507
ALVES, L.S., et al. Salinidade na água de irrigação e aplicação de biofertilizante bovino no crescimento e qualidade de mudas de tamarindo. Irriga. 2019, 24(2), 254-273. https://doi.org/10.15809/irriga.2019v24n2p254-273
ARNON, D. I. Copper enzymes in isolated chloroplasts: polyphenoloxidases in Beta vulgaris. Plant Physiology. 1949, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
AYERS, R.S. and WESTCOT, D.W. A qualidade da água na agricultura. 2ª edition. Campina Grande, PB: Universidade Federal da Paraíba, 1999.
CAJAMARCA, S.M.N., et al. Heterogeneity in the chemical composition of biofertilizers, potential agronomic use, and heavy metal contents of different agro-industrial wastes. Sustainability. 2019, 11(7), 1-13. https://doi.org/10.3390/su11071995
CAVALCANTE, L.F., et al. Biofertilizers in horticultural crops. Comunicata Scientiae. 2019, 10(4), 415-428. https://doi.org/10.14295/cs.v10i4.3058
CAVALCANTE, L.F., et al. Produção do maracujazeiro-amarelo irrigado com água salina em covas protegidas contra perdas hídricas. Irriga. 2005, 10(3), 229-240. https://doi.org/10.15809/irriga.2005v10n3p229-240
DINIZ, A.A., et al. Leaf composition and productivity of yellow passion fruit (Passiflora edulis Sims.) Access “Guinezinho” in soil with bovine biofertilizer and nitrogen. Australian Journal of Crop Science. 2020, 14(1), 133-139. https://doi.org/10.21475/ajcs.20.14.01.p2013
DUKARE, A., et al. Plastic film and organic mulching increases rhizosphere microbial population, plant growth, and mineral uptake in low input grown tomato in the northwestern region of India. Journal of Plant Nutrition. 2021, 44(6), 814-828. https://doi.org/10.1080/01904167.2020.1860219
EL-BELTAGI, H.S., et al. Mulching as a sustainable water and soil saving practice in agriculture: A Review. Agronomy. 2022, 12(8),1881. https://doi.org/10.3390/agronomy12081881
FERREIRA, D.F. Sisvar: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria. 2019, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450
GAMA, D.R.S., et al. Physiological indexes of mini tomato cultivars grown in a protected environment. Bioscience Journal, 2020, 36(5), 1507-1517. https://doi.org/10.14393/BJ-v36n5a2020-40011
GUO, S., et al. Fate and transport of urea-N in a rain-fed ridge-furrow crop system with plastic mulch. Soil & Tillage Research. 2019, 186(1), 214-223. https://doi.org/10.1016/j.still.2018.10.022
LICHTENTHALER, H.K. Chlorophylls and carotenoids: pigment photosynthetic biomembranes. Methods in Enzymology. 1987, 148(1), 362-385. http://doi.org/10.1016/0076-6879(87)48036-1
LIMA, F.A., et al. Yield of strawberry crops under different irrigation levels and biofertilizer doses. Revista Ciência Agronômica. 2018, 49, (3), 381-388. https://doi.org/10.5935/1806-6690.20180043
LIMA NETO, A.J., et al. Biofertilizante bovino, cobertura morta e revestimento lateral dos sulcos na produção de pimentão. Revista Caatinga. 2013, 26 (3), 1-8.
LIMA NETO, A.J., et al. Biometric variables and photosynthetic pigments in tamarind seedlings irrigated with saline water and biofertilizers. Semina: Ciências Agrárias. 2018, 39 (5), 1909-1920. https://doi.org/10.5433/1679-0359.2018v39n5p1909
LIMA NETO, A.J., et al. Productivity and photosynthetic pigments in bell pepper plants grown in soil with biofertilizer and protected against water loss. Revista Ceres. 2021, 68 (1), 39-46. https://doi.org/10.1590/0034-737X202168010005
MALAVOLTA, E., VITTI, G.C. and OLIVEIRA, S.A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2ª edition. Piracicaba, SP: Potafos, 1997.
MATOS, R.M., et al. Organic fertilization as an alternative to the chemical in cherry tomato growing under irrigation depths. Bioscience Journal, 2021, 37, e37006. https://doi.org/10.14393/BJ-v37n0a2021-48270
MENDONÇA, S.A., et al. The effect of different mulching on tomato development and yield. Scientia Horticulturae. 2021, 275, 109657. https://doi.org/10.1016/j.scienta.2020.109657
MESQUITA, F.O., et al. Saline water and bovine biofertilizer chemically enriched on jackfruit seedlings var. soft. Bioscience Journal. 2020, 36, (6), 1919-1929. https://doi.org/10.14393/BJ-v36n6a2020-47735
OLIVEIRA, CE.S., et al. Tolerance and adaptability of tomato genotypes to saline irrigation. Crops. 2022, 2, 306-322. https://doi.org/10.3390/crops2030022
PAIVA, F.I.G., et al. Qualidade de tomate em função da salinidade da água de irrigação e relações K/Ca via fertirrigação. Irriga. 2018, 23 (1), 180-193. https://doi.org/10.15809/irriga.2018v23n1p180
PEREIRA, J.M., et al. Agronomic, physicochemical, and sensory characteristics of fruit of Biquinho pepper cultivated with liquid biofertilizer. Scientia Horticulturae. 2021, 288, 110348. https://doi.org/10.1016/j.scienta.2021.110348
RICHARDS, L.A. Diagnosis and improvement of saline and alkali soils. 1ª edition. Washington, DC: USDA, 1954.
SALES, J.R.S., et al. Production and quality of okra fruits submitted to doses and types of biofertilizers. Journal of Agricultural Science. 2019, 11 (4), 507-514. https://doi.org/10.5539/jas.v11n4p507
SANTANA, M.J., et al. Coeficientes de cultura para o tomateiro irrigado. Irriga. 2011, 16 (1), 11-20. https://doi.org/10.15809/irriga.2011v16n1p11
SANTOS, E.M., et al. Yield and quality of strawberry fruits fertilized with bovine biofertilizer. Revista Caatinga, 2019, 32, (1), 16-26. https://doi.org/10.1590/1983-21252019v32n103rc
SANTOS, H.G., et al. Sistema Brasileiro de Classificação de Solos. 5ª edition. Rio de Janeiro, RJ: Embrapa Solos, 2018.
SILVA, A.C.C., et al. Yield in tomato under two water depths and plastic mulching. Revista Brasileira de Ciências Agrárias. 2019, 14 (3), 1-6. https://doi.org/10.5039/agraria.v14i3a5664
TEIXEIRA, P.C., et al. Manual de métodos de análise de solo. 3ª edition. Rio de Janeiro, RJ: Embrapa Solos, 2017.
ZHAO, Y., et al. Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau. Agricultural Water Management. 2018, 202 (1), 99-112. https://doi.org/10.1016/j.agwat.2018.02.017
ZÖRB, C., CHRISTOPH-MARTIN, G. and KARL-JOSEF, D. Salinity and crop yield. Plant Biology. 2019, 21(S1), 31-38. https://doi.org/10.1111/plb.12884
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Rossana Carla Montenegro de Vasconcelos, Lourival Ferreira Cavalcante, Antônio Gustavo de Luna Souto, Adriana Araújo Diniz, Antonio João de Lima Neto, Tony Andresson Guedes Dantas
This work is licensed under a Creative Commons Attribution 4.0 International License.