Accelerated aging test in the determination of safflower seeds vigor

Authors

DOI:

https://doi.org/10.14393/BJ-v38n0a2022-54228

Keywords:

Carthamus tinctorius, Physiological quality, Stress test, Vigor test.

Abstract

In assessing the quality of seed lots, the vigor tests are complementary to the germination test and they identify differences in the degree of deterioration of the lots. For safflower, there is little information regarding these tests. In this way, the intention of this study was to adapt the accelerated aging test methodology to assess the physiological potential of safflower seeds (Carthamus tinctorius). For this purpose, 12 seed lots were evaluated for thousand-seed weight, germination, first germination count, seedling emergence test (emergence percentage, emergence speed index, relative emergence frequency and the initial, final and mean times) and accelerated aging. For the accelerated aging test, the traditional and saline methods were used. For this, the samples were conditioned in periods of 0, 8, 16, 24, 32 and 48 hours at 42 °C. Afterwards, they were submitted to the germination test, with evaluation of normal seedlings on the 3rd day. The 12 lots were evaluated within each period, in independent experiments. The data were submitted to analysis of variance and the means were compared using the Scott-Knott clustering method at 5% probability. In the traditional accelerated aging test the periods of 16, 24, 32 and 48 hours were more efficient in differentiating the lots in vigor levels, as they stratified the lots in three classes and the time of 8 hour classified the lots in two levels of vigor. In the accelerated saline aging method the time 32 hours were more efficient since it ranked seed lots at three levels of vigor and the periods of 8, 16 and 24 hour stratified the lots in two levels. In results obtained by the principal component analysis it was verified. The variables traditional accelerated aging for 24 and 32 hours correlated with emergence in the field. Therefore, the traditional accelerated aging test at 42 °C for 24 hours are promising for evaluating the physiological quality of safflower seeds.

Downloads

Download data is not yet available.

References

ANICESIO, E.C.A., et al. Dry mass, nutrient concentration and accumulation in safflower (Carthamus tinctorius L.) influenced by nitrogen and potassium fertilizations. Australian Journal of Crop Science. 2015, 9(6) 552-560.

ARAÚJO, F.S., et al. Adequação do teste de envelhecimento acelerado para avaliação do vigor de sementes de leucena. Agrária. 2017, 12(1) 92-97. http://dx.doi.org/10.5039/agraria.v12i1a5422

ÁVILA, M.R., et al. Testes de laboratório em sementes de canola e a correlação com a emergência das plântulas em campo. Revista Brasileira de Sementes. 2005, 27(1), 62-70. http://dx.doi.org/10.1590/S0101-31222005000100008

BAGHERI, H. and SAM-DALIRI, M. Effect of water stress on agronomic traits of spring safflower cultivars (Carthamus Tinctorius L.). Australian Journal of Basic and Applied Sciences. 2011, 5(12), 2621-2624.

BARBOSA, R.M., COSTA, D.S. and SA, M.E. Envelhecimento acelerado em sementes de alface. Ciência Rural. 2011, 41(11), 1899-1902. http://dx.doi.org/10.1590/S0103-84782011005000138

BERGER, A.P.A., RANAL, M.A. and SANTANA, D.G. Variabilidade na dormência relativa dos diásporos de Lithraea molleoides (Vell.) Eng. Ciência Florestal. 2014, 24(2), 1-13. http://dx.doi.org/10.5902/1980509814570

BIDGOLY, R.O., et al. Effect of temperature and water potential on Carthamus tinctorius L. seed germination: Quantification of the cardinal temperatures and modeling using hydrothermal time. Industrial Crops & Products. 2018, 113(3), 121-127. https://dx.doi.org/10.1016/j.indcrop.2018.01.017

BRASIL, Ministério da Agricultura, Pecuária e Abastecimento: Instrução normativa nº 45, de 17 de setembro de 2013, Brasília: MAPA, 2013.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento: Regras para Análise de Sementes. Brasília: Secretaria de Defesa Agropecuária, 2009.

CARVALHO, N.M. and NAKAGAWA, J. Sementes: ciência, tecnologia e produção. 5th ed. Jaboticabal: FUNEP, 2012.

COIMBRA, R.A., et al. Teste de germinação com acondicionamento dos rolos de papel em sacos plásticos visando a otimização dos resultados. Revista Brasileira de Sementes. 2007, 29(1), 92-97. https://doi.org/10.1590/S0101-31222007000100013

CORONADO, L.M. El cultivo Del cártamo (Carthamus tinctorius L.) en México. 1th ed. Ciudad Obregon: Instituto nacional de investigaciones forestales, agrícolas y pecuárias. 2010.

COSTA, C.J., TRZECIAK, M.B. and VILLELA, F.A. Potencial fisiológico de sementes de brássicas com ênfase no teste de envelhecimento acelerado. Horticultura Brasileira. 2008, 26(2), 144-148. http://dx.doi.org/10.1590/S0102-05362008000200003

DELOUCHE, J.C. and BASKIN, C.C., Accelerated aging techniques for predicting the relative storability of seed lots. Seed Science and Technology. 1973, 1, 427-452.

DEMIR, M. Conformity of vigor tests to determine the seed quality of safflower (Carthamus tinctorius L.) cultivars. Australian Journal of Crop Science. 2014, 8(3), 455-459.

EMONGOR, V. Safflower (Carthamus tinctorius L,) the underutilized and neglected crop: A review. Asian Journal of Plant Science. 2010, 9(6), 299-306. https://doi.org/10.3923/ajps.2010.299.306

FLAVIO. J.J.P. and PAULA, R.C. Testes de envelhecimento acelerado e de condutividade elétrica em sementes de Dictyoloma vandellianum A. Juss. Scientia Forestalis. 2010, 38(87), 391-399.

FRANDOLOSO, D.C.L., et al. Qualidade de sementes de alface avaliada pelo teste de envelhecimento acelerado. Revista de Ciências Agrárias. 2017. 40(4), 703-713. http://dx.doi.org/10.19084/RCA17009

GALAVI, M., ROMROUDI, M. and TAVASSOLI, A. Effect of micronutrientes foliar application on yield and seed oil contente of safflower (Carthamus tinctorius). African Journal of Agricultural Research. 2012, 7(3), 482-486.

GAMA, G.F., et al. Substrates and duration for conducting the safflower seed germination test. Científica. 2019, 47(4) 426-433. http://dx.doi.org/10.15361/1984-5529.2019v47n4p426-433

GIRARDI, L.B., et al. Envelhecimento acelerado em sementes de cártamo. Revista da FZVA. 2019, 19(1), 43-54.

GODAKAHRIZ, S.J., RASTEGAR, Z. and SHAHVERDIKANDI, M.A. Effect of seed aging on safflower (Carthamus tinctorius L.) seed vigor and germination parameters. International Research Journal of Applied and Basic Sciences. 2012, 3(3), 445-449.

GOMES FILHO, J.C., et al. Biodiesel production from Sterculia striata oil by ethyl transesterification method. Industrial Crops and Products. 2015, 74(15), 767-772. https://doi.org/10.1016/j.indcrop.2015.06.013

HONGYU, K., SANDANIELO, V.L.M. and OLIVEIRA JUNIOR, G.J. Análise de componentes principais: Resumo teórico, aplicação e interpretação. Engineering and Science. 2016, 5(1), 83-90. http://dx.doi.org/10.18607/ES201653398

ISTA. International Seed Testing Association. Seed Vigour Testing. International Rules for Seed Testing, Zurich: ISTA, 2014.

JIANHUA, Z. and McDONALD, M.B. The saturated salt accelerated aging test for small-seeded crops. Seed Science and Technology. 1997, 25(1), 123-131.

KAYA, M.D., et al. Prediction of viability and emergence capacity of safflower seed lots. The Journal of Animal & Plant Sciences. 2019, 29(3), 714-720.

KHAVARI, F., GHADERI-FAR, F. and SOLTANI, E., Laboratory tests for predicting seedling emergence of safflower (Carthamus tinctorius L.) cultivars. Seed Technology. 2009, 31(2), 189-193.

KIZIL, S., et al. Comprehensive study on Safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnology & Biotechnological Equipment. 2008, 22(4), 947-953. https://doi.org/10.1080/13102818.2008.10817585

LENZ, N.B.G., et al. Sowing Depth on Emergence of Different Safflower Genotypes (Carthamus tinctorius L.). Journal of Agricultural Science. 2017, 9(12), 135-151. http://dx.doi.org/10.5539/jas.v9n12p135

LOPES, C.A., et al. Importance of amylases for physiological quality in maize seeds. Biotemas. 2017, 30(3), 1-7.

MACHADO, C.G., et al. Accelerated aging test for forage pea seeds. Semina: Ciências Agrárias. 2019, 40(5), 1819-1828. http://dx.doi.org/10.5433/1679-0359.2019v40n5p1819

MAGUIRE, J.D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science. 1962, 2(2), 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x

MARCOS FILHO, J. Seed vigor testing: an overview of the past, present and future perspective. Scientia agrícola. 2015, 72(4), 363-374. https://doi.org/10.1590/0103-9016-2015-0007

MARCOS FILHO, J. Seed physiology of cultivated plant. 1st ed. Londrina: ABRATES, 2016.

MARINHO, J.L., et al. Evaluation of vigor and tolerance of sweet corn seeds under hypoxia. Journal of Seed Science. 2019, 41(2), 180-186. http://dx.doi.org/10.1590/2317-1545v41n2209568

MARTINS, A.B.N., et al. Accelerated aging test in amaranth (Amaranthus cruentus L.) seeds. Australian Journal of Crop Science. 2018, 12(3), 444-448.

MARTINS, A.B.N., et al. Analysis of seed quality: a nonstop envolving activity. African Journal of Agricultural Research. 2014, 9(49), 3549-3554.

MCDONALD JUNIOR, M.B. and PHANEENDRANATH, B.R. A modified accelerated aging seed vigor test for soybeans. Journal of Seed Technology. 1978, 3(1), 27-37.

MENEZES, V.O., et al. Envelhecimento acelerado em sementes de Zinnia elegans Jacq. colhidas em diferentes épocas. Revista Brasileira de Sementes. 2008, 30(3), 39-47. http://dx.doi.org/10.1590/S0101-31222008000300006

NAKAGAWA, J., 1994. Testes de vigor baseados na avaliação das plântulas. In: VIEIRA, R.D. and CARVALHO, N.M. (Eds.). Testes de vigor em sementes. Jaboticabal: FUNEP, pp. 49-85.

OVALLES, F.A. and COLLINS, M.E. Variability of northwest Florida soils by principal component of analysis. Soil Science Society of American Journal. 1988, 52(5), 1430-1435. https://doi.org/10.2136/sssaj1988.03615995005200050042x

RADKE, A.K., et al. Alternativas metodológicas do teste de envelhecimento acelerado em sementes de coentro. Ciência Rural. 2016, 46(1), 95-99. http://dx.doi.org/10.1590/0103-8478cr20140188

R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2019. Available from: http://www.R-project.org/

RIBEIRO, M.C.C., MARQUES, B.M. and AMARRO FILHO, J. Efeito da salinidade na germinação de sementes de quatro cultivares de girassol (Helianthus annuus L.). Revista Brasileira de Sementes. 2001, 23(1), 281-284. http://dx.doi.org/10.17801/0101-3122/rbs.v23n1p281-284

ROCHA, C.R.M., SILVA, V.N. and CICERO, S.M. Avaliação do vigor de sementes de girassol por meio de análise de imagens de plântulas. Ciência Rural. 2015. 45(6), 970-976. http://dx.doi.org/10.1590/0103-8478cr20131455

SANTANA, D.G. and RANAL, M.A. Análise da germinação: um enfoque estatístico. 1st ed. Brasília: Editora Universidade de Brasília, 2004.

SINGH, V. and NIMBKAR, N., 2016. Safflower. In: GUPTA, S.K. (Eds.). Breeding Oilseed Crops for Sustainable Production. Jammu: Academic Press, pp. 147-165.

SOLEYMANI, A. Safflower (Carthamus tinctorius L.) seed vigor tests for the prediction of field emergence. Industrial Crops and Product. 2019, 131, 378-386. http://dx.doi.org/10.1016/j.indcrop.2017.03.022

TUNES, L.M., et al. Accelerated aging to assess parsley seed vigor. Horticultura Brasileira. 2013, 31(3), 457-460. http://dx.doi.org/10.1590/S0102-05362013000300018

YAO, Y., et al. Structural elucidation and immune-enhancing activity of an arabinogalactan from flowers of Carthamus tinctorius L. Carbohydrate Polymers. 2018, 202, 134-142. https://doi.org/10.1016/j.carbpol.2018.08.098

Downloads

Published

2022-02-16

How to Cite

COELHO, M.V., SILVA, I.M.H. de L. e ., SILVA, A.A.S., PAZ, R.B. de O., ROCHA, D.I., MACHADO, C.G. and SILVA, G.Z. da, 2022. Accelerated aging test in the determination of safflower seeds vigor. Bioscience Journal [online], vol. 38, pp. e38003. [Accessed15 November 2024]. DOI 10.14393/BJ-v38n0a2022-54228. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/54228.

Issue

Section

Agricultural Sciences