Aerobic stability of tifton 85 silage with and without pre-drying in the sun




Ammonia Nitrogen, Cynodon, pH, Temperature.


The objective of this study was to evaluate pH, ammoniacal nitrogen, and aerobic stability of silage of Tifton 85 grass silage with two dry matter contents at different silos opening times. The experimental design was completely randomized, in a subdivided plots scheme, in which the silages constituted the plots and aerobic exposure times the subplots, with four replications. To verify the aerobic stability of the silages, the temperature and pH were analyzed at seven hours after the silos were opened (1, 24, 48, 72, 96, 120, and 144 hours). The pH reached adequate levels for conservation only after 90 days of fermentation for the silages with and without pre-drying in the sun. Ammoniacal nitrogen remained below the recommended limits in both silages. As for the silage temperature, no loss of aerobic stability was observed. However, the observed pH revealed a break instability after 72 hours when the silos were opened at 28 days, with no changes for the remaining silage periods. It is possible to obtain suitable silages from Tifton 85 with or without pre-warming in the sun, however, a minimum fermentation period of 90 days should be adopted. The studied silages presented high aerobic stability, but when kept silage for only 28 days, they should be consumed by the animals within 48 hours after the supply.


Download data is not yet available.


AMARAL, R.C., et al. Características fermentativas e químicas de silagens de capim-marandu produzidas com quatro pressões de compactação. Revista Brasileira de Zootecnia. 2007, 36(3), 532-539.

ÁVILA, C.L.S., et al. Aerobic stability of sugar cane silages with a novel strain of Lactobacillus sp. isolated from sugar cane. Revista Brasileira Zootecnia. 2012, 41(2), 249-255.

BERNARDES, T.F., et al. Silage review: Unique challenges of silages made in hot and cold regions. Journal of Dairy Science. 2018, 101(2), 4001-4019.

BERNARDES, T.F., REIS, R.A. and AMARAL, R.C. Chemical and microbiological changes and aerobic stability of marandu grass silages after silo opening. Revista Brasileira Zootecnia. 2009, 38(1), 1-8.

BOLSEN, K.K., et al. Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. Journal of Dairy Science. 1992, 75(11), 3066-3083.

BOREANI, G., et al. Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science. 2018, 101(2), 3952-3979.

CHERNEY, J.H. and CHERNEY, D.J.R., 2003. Assessing Silage Quality. In: BUXTON, R.; MUCK, R. E. and HARRISON, J. H. Silage Science and Technology. Madison, Wisconsin, USA: Wiley, 141-198.

DRIEHUIS F., et al. Occurrence of mycotoxins in feedstuffs of dairy cows and estimation of total dietary intakes. Journal of Dairy Science. 2008, 91(11), 4261-4271.

DRIEHUIS, F., et al. Silage review: animal and human health risks from silage. Journal of Dairy Science. 2018, 101(5), 4093-4110.

GAYER, T.O., et al. Different dry matters content used for the conservation of annual ryegrass (Lolium multiflorum Lam.) in anaerobic environment. African Journal of Agricultural Research. 2019, 14(6), 369-378.

GRANT, R.J. and FERRARETTO, L.F. Silage review: Silage feeding management: Silage characteristics and dairy cow feeding behavior. Journal of Dairy Science. 2018, 101(5), 4111-4121.

JOBIM, C.C., et al. Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia. 2007, 36, 101-119.

KUNG JR, L., et al. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science. 2018, 101(5), 4020-4033.

MCDONALD, P., HENDERSON, A.R. and HERON, S.J.E. The biochemistry of silage. 2ª ed. Marlow: Chalcombe Publications, 1991.

MCDONALD, P., et al. Animal Nutrition. Canada: Pearson Education, 2010.

MOURA, M.M.A., et al. Chemical composition of sorghum genotypes silages. Acta Scientiarum. Animal Sciences. 2016, 38, 369-373.

MUCK, R.E., et al. Silage review: recent advances and future uses of silage additives. Journal of Dairy Science. 2018, 101(5), 3980-4000.

NERES, M.A., et al. Microbiological profile and aerobic stability of Tifton 85 bermudagrass silage with different additives. Revista Brasileira de Zootecnia. 2013, 42, 381-387.

PACHECO, F.W., et al. Fermentation losses of elephant grass (Pennisetum purpureum Schum.) silage with increasing levels of (Gliricidia sepium) hay. Acta Veterinaria Brasílica. 2014, 8(3), 155-162.

QUARESMA, J.P.S., et al. Recuperação de matéria seca e composição química de silagens de gramíneas do gênero Cynodon submetidas a períodos de pré-emurchecimento. Ciência e Agrotecnologia. 2010, 34(5), 1232-1237.

REZENDE, A.V., et al. Perdas fermentativas e estabilidade aeróbia de silagens de cana-de-açúcar tratadas com cal virgem e cloreto de sódio. Revista Brasileira Zootecnia. 2011, 40(4), 739-746.

SANTOS, E.M., et al. Effect of regrowth interval and a microbial inoculant on the fermentation profile and dry matter recovery of guinea grass silages. Journal of Dairy Science. 2014, 97(7), 4423-4432.

SANTOS, M.V., et al. Tolerância do Tifton 85 ao glyphosate em diferentes épocas de aplicação. Planta Daninha. 2010, 28(1), 131-137.

TAVARES, V.B., et al. Efeitos da compactação, da inclusão de aditivo absorvente e do emurchecimento na composição bromatológica de silagens de capim-tanzânia. Revista Brasileira de Zootecnia. 2009, 38(1), 40-49.

VALERIANO, A.R., et al. Efeito da adição de Lactobacillus sp. na ensilagem de cana-de-açúcar. Revista Brasileira de Zootecnia. 2009, 38(6), 1009-1017.

WOOLFORD, M.K. The silage fermentation. New York: Marcel Dekker, 1984.




How to Cite

SCHNEIDER, C.R., CASTAGNARA, D.D., FERNANDES, T. and NERES, M.A., 2021. Aerobic stability of tifton 85 silage with and without pre-drying in the sun. Bioscience Journal [online], vol. 37, pp. e37060. [Accessed21 February 2024]. DOI 10.14393/BJ-v37n0a2021-54036. Available from:



Agricultural Sciences