Photosynthesis of Physalis peruviana under different densities of photons and saline stress

Authors

  • Francisco Romário Andrade Figueiredo Universidade Federal Rural do Semi-Árido https://orcid.org/0000-0002-4506-7247
  • João Everthon da Silva Ribeiro Universidade Federal da Paraíba https://orcid.org/0000-0002-1937-0066
  • Jackson Silva Nóbrega Universidade Federal da Paraíba https://orcid.org/0000-0002-9538-163X
  • Wilma Freitas Celedônio Universidade Federal da Paraíba
  • Reynaldo Teodoro de Fátima Universidade Federal de Campina Grande
  • Jean Telvio Andrade Ferreira Universidade Federal de Campina Grande
  • Thiago Jardelino Dias Universidade Federal da Paraíba https://orcid.org/0000-0002-7843-6184
  • Manoel Bandeira de Albuquerque Universidade Federal da Paraíba

DOI:

https://doi.org/10.14393/BJ-v37n0a2021-53948

Keywords:

Gas exchange, Light compensation, Salinity.

Abstract

Physalis peruviana L. is a solanacea that has been gaining prominence due to its fruits presenting good acceptance in the national and international market. However, several abiotic factors, such as salinity, can cause physiological disturbances in plants, and these changes may be of greater or lesser intent according to species. Therefore, the objective of the present work was to evaluate the physiological behavior of P. peruviana submitted to different fluxes of photosynthetically active photons (PPFD) and saline stress. The experimental design was a randomized block design with three saline levels (ECw) (0.5, 2.75 and 5.00 dS m-1) with four replications. Gas exchange measurements were performed with a portable infrared gas analyzer. Liquid CO2 assimilation, stomatal conductance, internal CO2 concentration, water use efficiency and instantaneous carboxylation efficiency were measured. Data were subjected to analysis of variance by F test and in cases of significance applied to regression analysis. The increase in PPFD provided reductions in stomatal conductance up to the density of approximately 400 μmol m-2s-1, being more pronounced in ECw of 2.75 and 5.0 dS m-1. The maximum CO2 assimilation rates in the three salinities are different according to the PPFD. The salinity of irrigation water reduced the quantum efficiency of photosynthesis in P. peruviana plants.

Downloads

Download data is not yet available.

References

ALVARES, C.A., et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 2016, 22(6), 711-728. https://orcid.org/0000-0003-1871-0046

BEKHRADI, F., et al. Effects of salt stress on physiological and postharvest quality characteristics of different Iranian genotypes of basil. Horticulture Environment and Biotechnology. 2015. 56(6), 777-785. https://doi.org/10.1007/s13580-015-1095-9

BEZERRA, M.A.F., et al. Saline water, pit caoting and calcium fertilization on clorophyll, fluorescence, gas exchange and production in passion fruit. Journal of Agricultural Science. 2019, 11(2), 319-329. https://doi.org/10.5539/jas.v11n2p319

BONAMIGO, T., SCALON, S.P.Q. and PEREIRA, Z.V. Substratos e níveis de luminosidade no crescimento inicial de mudas de Tocoyena formosa (Cham. & Schltdl.) K. Schum. (Rubiaceae). Ciência Florestal. 2016, 26(2), 501-511. http://dx.doi.org/10.5902/1980509822750

BOSCO, M.R.O., et al. Efeito do NaCl sobre o crescimento, fotossíntese e relações hídricas de plantas de berinjela. Revista Ceres. 2009, 56(3), 296-302.

BRAVO, K., and OSORIO, E. Characterization of polyphenol oxidade from Cape gooseberry (Physalis peruviana L.) fruit. Food Chemistry. 2016, 197, 185-190. https://doi.org/10.1016/j.foodchem.2015.10.126

BRITO, M.E.B., et al. Gas exchange and fluorescence of citrus rootstocks varieties under saline stress. Revista Brasileira de Fruticultura. 2016, 38(2), 1-8. http://dx.doi.org/10.1590/0100-29452016951

CODY, R. An Introduction to SAS University Edition. Cary: SAS Institute, 2015.

EMBRAPA. Sistema brasileiro de classificação de solos. 5 ed. Brasília, DF: Embrapa, 2018.

FILGUEIRAS, L., et al. Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant Soil. 2020, 451, 57-73. https://doi.org/10.1007/s11104-019-04163-1

FREIRE, J.L.O., et al. Rendimento quântico e trocas gasosas em maracujazeiro amarelo sob salinidade hídrica, biofertilização e cobertura morta. Revista Ciência Agronômica. 2014, 45(1), 82-91.

HERNÁNDEZ, R. and KUBOTA, C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Enviromental and Experimental Botany. 2016, 121, 66-74. https://doi.org/10.1016/j.envexpbot.2015.04.001

KRISHANIA, S., DWIVEDI, P. and AGARWAL, K. Strategies of adaptation and injury exhibited by plants under a variety of external conditions: a short review. Comunicata Scientiae. 2013, 4(2), 103-110. https://doi.org/10.14295/cs.v4i2.426

LAWSON, T. and BLATT, M.R. Stomatal size, speed, and responsiveness impacto n photosynthesis and water use efficiency. Plant Physiology. 2014, 164, 1556-1570. https://doi.org/10.1104/pp.114.237107

LIMA, G.S., et al. Trocas gasosas, pigmentos cloroplastídicos e dano celular na mamoeira sob diferentes composições catiônica da água. Irriga. 2017, 22(4), 757-774. http://dx.doi.org/10.15809/irriga.2017v22n4p757-774

MACHADO, E.C., et al. Respostas da fotossíntese de três espécies de citros a fatores ambientais. Revista Agropecuária Brasileira. 2005, 40(12), 1161-1170.

MARENCO, R.A., et al. Fisiologia de espécies florestais da Amazônia: fotossíntese, respiração e relações hídricas. Revista Ceres. 2014, 61, 786-789. http://dx.doi.org/10.1590/0034-737X201461000004

MELO JÚNIOR, R.P. Qual a influência da cor da luz na fotossíntese?. Caderno Brasileiro de Ensino de Física. 2015, 32(1), 287-290. https://doi.org/10.5007/2175-7941.2015v32n1p287

ORTEGA, A.R., et al. Avaliação do crescimento de mudas de Psidium cattleianum Sabine a diferentes níveis de sombreamento em viveiro. Cerne. 2006, 12(3), 300-308.

REZENDE, R.A.L.S., et al. Salt estress and exogenous silicon influence physiological and anatomical features of in vitro grown cape gooseberry. Ciência Rural. 2018, 48(1), 1-9. http://dx.doi.org/10.1590/0103-8478cr20170176

SANTOS, U.F., et al. Níveis de sombreamento na produção de mudas de pau-de-balsa (Ochroma pyramidale). Bioscience Journal. 2014, 30(1), 129-136.

SILVA, T.I., et al. Echophysiological aspects of Ocimum basilicum under saline stress and salicylic acid. Revista Brasileira de Ciências Agrárias. 2019, 14(2), 1-9. https://doi.org/10.5039/agraria.v14i2a5633

SUASSUNA, J.F., et al. Trocas gasosas e componentes de crescimento em porta enxertos de citros submetidos à restrição hídrica. Irriga. 2014, 19(3), 464-477. https://doi.org/10.15809/irriga.2014v19n3p464

TAIZ, L., et al. Fisiologia e Desenvolvimento Vegetal. 6th ed. Porto Alegre: Artmed, 2017.

TATAGIBA, S.D., et al. Limitações fotossintéticas em folhas de plantas de tomateiro submetidas a crescentes concentrações salinas. Revista Engenharia na Agricultura. 2014, 22(2), 138-149. http://dx.doi.org/10.13083/1414-3984.v22n02a05

TATAGIBA, S.D., PEZZOPANE, J.E.M. and REIS, E.F. Fotossíntese em Eucalyptus sob diferentes condições edafoclimáticas. Revista Engenharia na Agricultura. 2015, 23(4), 336-345. https://doi.org/10.13083/reveng.v23i4.573

Downloads

Published

2021-12-29

How to Cite

FIGUEIREDO, F.R.A., RIBEIRO, J.E. da S., NÓBREGA, J.S., CELEDÔNIO, W.F., FÁTIMA, R.T. de, FERREIRA, J.T.A., DIAS, T.J. and ALBUQUERQUE, M.B. de, 2021. Photosynthesis of Physalis peruviana under different densities of photons and saline stress. Bioscience Journal [online], vol. 37, pp. e37082. [Accessed5 November 2024]. DOI 10.14393/BJ-v37n0a2021-53948. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/53948.

Issue

Section

Agricultural Sciences