Methods of macrophages activation and their modulation for the prospection of new antileishmania drugs: a review


  • Michel Muálem de Moraes Alves Universidade Federal do Piauí
  • Daniel Dias Rufino Arcanjo Universidade Federal do Piauí
  • Rita Cássia Viana de Carvalho Universidade Federal do Piauí
  • Layane Valéria Amorim Universidade Federal do Piauí
  • Ingredy Lopes dos Santos Universidade Federal do Piauí
  • Rodolfo Ritchelle Lopes Santos Universidade Federal do Piauí
  • Kayo Alves Figueiredo Universidade Federal do Piauí
  • Jessica Freire Silva Figueiredo Universidade Federal do Piauí
  • Enoque Pereira Costa Sobrinho-Júnior Universidade Federal do Piauí
  • Lucas Pereira Lima da Cruz Universidade Federal do Piauí
  • Valeria Carlos Sousa Universidade Federal do Piauí
  • Laiz Pinheiro dos Santos Universidade Federal do Piauí
  • Juan Carlos Ramos Gonçalves Universidade Federal da Paraíba
  • Sabrina Maria Portela Carneiro Universidade Federal do Piauí
  • Ivete Lopes de Mendonça Universidade Federal do Piauí
  • Fernando Aécio de Amorim Carvalho Universidade Federal do Piauí



Immunomodulation, Intracellular Calcium, Leishmaniasis, Natural Products, Nitric Oxide, Phagocytosis.


Leishmaniasis are a group of parasitic zoonoses provoked by protozoa from Leishmania genus and belonging to the group of neglected tropical diseases. The search and development for new drugs is necessary not only to investigate the activity against only the parasite, but also to investigate the possible synergistic effect of new drugs with the immune response of the host. In the present review, macrophages are pointed out as potential targets of the investigation of new antileishmanial drugs, and some methodologies in order to assess their activation as response to Leishmania-infected cells are presented. Macrophages are an important role in the cellular immune response, since they are cells from mononuclear phagocytic system, the first line of defense of the host, against parasites from Leishmania genus. Phagocytic capacity, lysosomal activity, increase of nitric oxide and intracellular calcium levels are parameters regarding assessment of macrophages activation which allow them to be more hostile in order to solve the infection and lead the patient to cure. In this context, we bring 19 substances already investigated and that activate macrophages, what makes them promising in the antileishmanial treatment. Therefore, assessment of macrophages activation, are important tools for discovery of immunomodulatory compounds which have potential to act in synergism with host immune response. Such compounds might be promising as monotherapy in the treatment of leishmaniasis, as well as being used as adjuvants in vaccines and/or in combination with conventional drugs.


Download data is not yet available.


ALIZADEH, B.H., et al. Leishmanicidal evaluation of novel synthetic chromenes. Archiv der Pharmazie (Weinheim). 2008, 341(12), 787-793.

ALVES, M.M.M., et al. Gallic and ellagic acids: two natural immunomodulator compounds solve infection of macrophages by Leishmania major. Naunyn Schmiedebergs Archives of Pharmacology. 2017, 390(9), 893-903.

ASHFORD, R.W. The leishmaniases as emerging and reemerging zoonoses. International Journal for Parasitology. 2000, 30(12-13) 1269-1281.

BHATTACHARJEE, S., et al. Quassin alters the immunological patterns of murine macrophages through generation of nitric oxide to exert antileishmanial activity. Journal Antimicrobial Chemotherapy. 2009, 63(2), 317-324.

BOGDAN, C., et al. Invasion, control and persistence of Leishmania parasites. Current Opinion in Immunology. 1996, 8(4), 517-525.

BOGDAN, C. and ROLLINGHOFF, M. The immune response to Leishmania: mechanisms of parasite control and evasion. International Journal for Parasitology. 1998, 28(1), 121-134.

CARNEIRO, S.M.., et al. The cytotoxic and antileishmanial activity of extracts and fractions of leaves and fruits of Azadirachta indica (A Juss.). Biological Research. 2012, 45(2), 111-116.

CARVALHO, C.E.S., et al. Anti-Leishmania activity of essential oil of Myracrodruon urundeuva (Engl.) Fr. All.: Composition, cytotoxity and possible mechanisms of action. Experimental Parasitology. 2017, 175, 59-67.

CLEARY, J.A., KELLY, G.E. and HUSBAND, A.J. The effect of molecular weight and beta-1,6-linkages on priming of macrophage function in mice by (1,3)-beta-D-glucan. Immunology and Cell Biology. 1999, 77(5), 395-403.

DE CASTRO OLIVEIRA, L.G.C., et al. In Vitro Effects of the Neolignan 2,3-Dihydrobenzofuran Against Leishmania Amazonensis. Basic & Clinical Pharmacology & Toxicology. 2017, 120(1), 52-58.

DE MEDEIROS, M.D., et al. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitology International. 2011, 60(3), 237-241.

DOLAI, S., et al. Overexpression of mitochondrial Leishmania major ascorbate peroxidase enhances tolerance to oxidative stress-induced programmed cell death and protein damage. Eukaryot Cell. 2009, 8(11), 1721-1731.

DUMAS, C., et al. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO Journal. 1997, 16(10), 2590-2598.

FARIAS, L.H.S., et al. Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection. Parasitology. 2017, 144(11), 1458-1467.

GHAZANFARI, T., et al. Garlic induces a shift in cytokine pattern in Leishmania major-infected BALB/c mice. Scandinavian Journal of Immunology. 2000, 52(5).

GHAZANFARI, T., HASSAN, Z.M. and KHAMESIPOUR, A. Enhancement of peritoneal macrophage phagocytic activity against Leishmania major by garlic (Allium sativum) treatment. Journal of Ethnopharmacolpgy. 2006, 103(3), 333-337.

GILL, J., et al. Thymic generation and regeneration. Immunological Reviews. 2003, 195, 28-50.

GRANDO, F.C., et al. Modulation of peritoneal macrophage activity by the saturation state of the fatty acid moiety of phosphatidylcholine. Brazilian Journal of Medical and Biological Research. 2009, 42(7), 599-605.

GREENBERG, S. and GRINSTEIN, S. Phagocytosis and innate immunity. Current Opinion in Immunology. 2002, 14(1), 136-145.

GURUNATHAN, S., et al. Requirements for the maintenance of Th1 immunity in vivo following DNA vaccination: a potential immunoregulatory role for CD8+ T cells. Journal of Immunology. 2000, 165(2), 915-924.

HARHAY, M.O., et al. Urban parasitology: visceral leishmaniasis in Brazil. Trends in Parasitology. 2011, 27(9), 403-409.

ISLAMUDDIN, M., et al. Th1-biased immunomodulation and therapeutic potential of Artemisia annua in murine visceral leishmaniasis. PLoS Neglected Tropical Diseases. 2015, 9(1), e3321.

KAYSER, O., KOLODZIEJ, H., and KIDERLEN, A.F. Immunomodulatory principles of Pelargonium sidoides. Phytotherapy Research. 2001, 15(2), 122-126.

KLEIN, L., et al. Antigen presentation in the thymus for positive selection and central tolerance induction. Nature Reviews Immunology. 2009, 9(12), 833-844.

KLIMP, A.H., et al. A potential role of macrophage activation in the treatment of cancer. Critical Reviews in Oncology/Hematology. 2002, 44(2), 143-161.

KOLODZIEJ, H., et al. Proanthocyanidins and related compounds: antileishmanial activity and modulatory effects on nitric oxide and tumor necrosis factor-alpha-release in the murine macrophage-like cell line RAW 264.7. Biological and Pharmaceutical Bulletin. 2001, 24(9), 1016-1021.

KOLODZIEJ, H. and KIDERLEN, A.F. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Phytochemistry. 2005, 66(17), 2056-2071.

KONDRASHIN, A.V., BARANOVA, A.M., MOROZOVA, L.F. and STEPANOVA, E.V. [Global trends in malaria control. Progress and topical tasks in malaria control programs]. Meditsnskaya Parazitologiya I Parazitarye Bolezni. 2011, 4, 3-8.

KRIFA, M., et al. Immunomodulatory and cellular anti-oxidant activities of an aqueous extract of Limoniastrum guyonianum gall. Journal of Ethnopharmacol. 2013, 146(1), 243-249.

LEE, W.L., HARRISON, R.E. and GRINSTEIN, S. Phagocytosis by neutrophils. Microbes and Infection. 2003, 5(14), 1299-1306.

LIEW, F.Y., et al. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. The Journal of Immunology. 1990, 144(12), 4794-4797.

LUCKHEERAM, R.V., ZHOU, R., VERMA, A.D. and XIA, B. CD4(+)T cells: differentiation and functions. Clinical and Developmental Immunology. 2012, 2012, 925135.

MELO, B.N., et al. Inhibitory effects of Zanthoxylum rhoifolium Lam. (Rutaceae) against the infection and infectivity of macrophages by Leishmania amazonensis. Anais da Academia Brasileira de Ciências. 2016, 88(3) Suppl, 1851-1861.

NADERER, T. and MCCONVILLE, M.J. The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiology. 2008, 10(2), 301-308.

NIEDERGANG, F. and CHAVRIER, P. Signaling and membrane dynamics during phagocytosis: many roads lead to the phagos(R)ome. Current Opinion in Cell Biology. 2004, 16(4), 422-428.

PARANAIBA, L., et al. An overview on Leishmania (Mundinia) enriettii: biology, immunopathology, LRV and extracellular vesicles during the host-parasite interaction. Parasitology. 2017, 145(10), 1265-1273.

PETERS, J.H., et al. Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunology Today. 1996, 17(6), 273-278.

RODRIGUES, K.A.F., et al. Eugenia uniflora L. Essential Oil as a Potential Anti-Leishmania Agent: Effects on Leishmania amazonensis and Possible Mechanisms of Action. Evidence Based Complementary Alternative Medicine. 2013, 2013, 279726.

RODRIGUES, K.A.F., et al. Syzygium cumini (L.) Skeels essential oil and its major constituent alpha-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. Journal of Ethnopharmacology. 2015, 160, 32-40.

ROY, N., et al. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis. PLoS One. 2014, 9(10), e110843.

SOARES, D.C., et al. Leishmanicidal activity of a supercritical fluid fraction obtained from Tabernaemontana catharinensis. Parasitology International. 2007, 56(2), 135-139.

SOUZA, A.C., et al. Platonia insignis Mart., a Brazilian Amazonian Plant: The Stem Barks Extract and Its Main Constituent Lupeol Exert Antileishmanial Effects Involving Macrophages Activation. Evidence Based Complementary Alternative Medicine. 2017, 2017, 3126458.

TEJLE, K., MAGNUSSON, K.E. and RASMUSSON, B. Phagocytosis and phagosome maturation are regulated by calcium in J774 macrophages interacting with unopsonized prey. Bioscience Reports. 2002, 22(5-6), 529-540.

UEDA-NAKAMURA, T., et al. Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitology International. 2006, 55(2), 99-105.

VALADARES, D.G., et al. Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species. Parasitology International. 2011, 60(4), 357-363.

VALADARES, D.G., et al. Therapeutic efficacy induced by the oral administration of Agaricus blazei Murill against Leishmania amazonensis. Parasitolical Research. 2021, 111(4), 1807-1816.

WALDRON, L.S., et al. Molecular epidemiology and spatial distribution of a waterborne cryptosporidiosis outbreak in Australia. Applied and Environmental Microbiology. 2011, 77(21), 7766-7771.

WHO. Leishmaniasis. Geneva: World Health Organization, 2019. Available from:

YOUNG, H.A. and HARDY, K.J. Role of interferon-gamma in immune cell regulation. Journal of Leukocyte Biology. 1995, 58(4), 373-381.




How to Cite

MUÁLEM DE MORAES ALVES, M., ARCANJO, D.D.R..., CARVALHO, R.C.V. de ..., AMORIM, L.V.., SANTOS, I.L. dos ., SANTOS, R.R.L..., FIGUEIREDO, K.A..., FIGUEIREDO, J.F.S.., SOBRINHO-JÚNIOR, E.P.C..., CRUZ, L.P.L. da .., SOUSA, V.C.., DOS SANTOS, L.P.., GONÇALVES, J.C.R..., CARNEIRO, S.M.P.., IVETE LOPES DE MENDONÇA and FERNANDO AÉCIO DE AMORIM CARVALHO, 2021. Methods of macrophages activation and their modulation for the prospection of new antileishmania drugs: a review. Bioscience Journal [online], vol. 37, pp. e37077. [Accessed22 February 2024]. DOI 10.14393/BJ-v37n0a2021-53770. Available from:



Health Sciences