Alternative products to control powdery mildew in soybeans culture in field




Acibenzolar-S-methyl, Fungicide, Glycine max L., Micronutrients, Microsphaera diffusa.


The occurrence of powdery mildew (Microsphaera diffusa) in soybean (Glycine max L.) has increased in the last harvests. In order to study the efficiency of powdery mildew control due to the application of alternative products and conventional fungicide, trials were conducted in Ponta Grossa, PR, Brazil, during the 2013/2014 and 2014/2015 growing seasons. The design used was randomized blocks with four replications. The treatments for the experiments were: 1 - control; 2 - acibenzolar-S-methyl (Bion 500 WG®); 3 - calcium (Max Fruit®); 4 - Micronutrients: copper, manganese and zinc (Wert Plus®); 5 - Micronutrients: manganese, zinc and molybdenum (V6®); 6 - NK fertilizer (Hight Roots®); 7 - Ascophyllum nodosum (Acadian®) and 8 - fungicide (azoxystrobin + cyproconazole) (Priori XTRA®) with the addition of the adjuvant. Four applications of alternative products (phenological stages V3, V6, R1 and R5.1) and two of fungicide (phenological stages R1 and R5.1) were carried out. The parameters evaluated were powdery mildew severity and productivity. The severity data made it possible to calculate the area under the disease progress curve (AUDPG). Alternative products didn’t reduce powdery mildew in the two harvests. The conventional fungicide treatment was the only one that controlled powdery mildew and didn’t reduce the productivity in both experiments.


Download data is not yet available.


ADAPAR - Agência de defesa agropecuária do Paraná. Priori Xtra. Available from:

ALTIERI, M.A. and NICHOLLS, C.I. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research. 2003, 72(2), 203-211.

ANDERSON, E.J., et al., 2019. Soybean [Glycine max (L.) Merr.] breeding: History, improvement, production and future opportunities. IN: J.M AL-KHAYRI, S.M. JAIN and D.V. JHONSON, eds. Advances in plant breeding strategies: Legumes, Heidelberg: Springer, p. 431-516.

ARRUDA, R.S., et al. Mushrooms extracts effect on the induction of phytoalexins and on the control of soybean powdery mildew in greenhouse. Bioscience Journal. 2012, 28(2), 1981-3163.

BARCELOS, J.P.Q., et al. Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants. Plant Pathology. 2018, 7(67), 1502-1513.

BATTISTI, R., et al. Soybean yield gap in the areas of yield contest in Brazil. International Journal of Plant Production. 2018, 12(3), 159-168.

BHARDWAJ, D., et al. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories. 2014, 13(1), 66-76.

BLUM, L.E., et al. Fungicides and fungicide mixtures to control soybean powdery mildew. Revista de Ciências Agroveterinárias. 2016, 1(1), 1-6.

CANTERI, M.G., et al. SASM Agri: Sistema para Análise e separação de médias em experimentos agrícolas pelos métodos Scot – Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação. 2001, 1(2), 18-24.

CARRÉ-MISSIO, V., et al. Inefficiency of silicon in leaf rust control on coffee grown in nutrient solution. Tropical Plant Pathology. 2009, 34(6), 416-421.

CARVALHO, B.O., et al. Action of defense activator and foliar fungicide on the control of Asiatic rust and on yield and quality of soybean seeds. Journal of Seed Science. 2013, 35(2), 198-206.

CONAB - Companhia nacional de abastecimento, Acompanhamento da safra brasileira de grãos. Boletim da safra de grãos, 2020. Available from:

DALLAGNOL, L.J., et al. Use of Acibenzolar-S-Methyl to control foliar diseases of soybean. Summa Phytopathologica. 2006, 32(3), 255-259.

DA ROCHA, M.R., et al. Effect of acibenzolar-s-methyl (benzothiadiazole), as a soybean systemic resistance inductor, on Heterodera glycines. Pesquisa Agropecuária Tropical. 2000, 30(2), 44-48.

DE ALMEIDA, R., FORCELINI, C.A. and GARCÉS FIALLOS, F.R. Chemical control of foliar diseases in soybean depends on cultivar and sowing date. Bioscience Journal. 2017, 33(5), 1188-1196.

EMBRAPA - Empresa Brasileira De Pesquisa Agropecuária. Centro nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. Rio de Janeiro: EMBRAPA, 2006.

FEHR, W.R. and CAVINESS, C.E. Stages on soybean development. Ames: Iowa State University/Cooperative Extention Service, 1977, p.11 (Special Report, 80).

FRIEDRICH, K., et al. Agrochemicals: more poisons in times of rights setbacks. OKARA: Geografia em debate. 2018, 12(2), 326-347.

GABARDO, G., et al. Alternative Products to Control Soybean Downy Mildew in the Field. Journal of Agricultural Science. 2020, 12(8), 160-170.

GODOY, C.V., et al. Doenças da soja. Manual de Fitopatologia. 2016, 2(5), 657-676.

IGARASHI, S., et al. Leaf wetness duration and percentage based on inter-row spacing, and influence on asian soybean rust. Summa Phytopathologica. 2014, 40(2), 123-127.

JUN, T.H., et al. Genetic mapping of the powdery mildew resistance gene in soybean PI 567301B. Theoretical and Applied Genetics. 2012, 125(6), 1159-1168.

LEITE, W.S., et al. Genetic parameters estimation, correlations and selection indexes for six agronomic traits in soybean lines F8. Comunicata Scientiae. 2016, 7(3), 302-310.

MACOSKI, N., et al. Application of Calcium and Sulfur in the Severity of Puccinia coronata f. sp. avenae. International Journal of Advanced Engineering Research and Science. 2021, 1(1), 1-8.

MARSCHNER, H. and MARSCHNER, P. Mineral nutrition of higher plants. London: Elsevier/Academic Press, 2012.

MATTIAZZI, P. Escala diagramática do oídio da soja. Efeito do oídio na produção e duração da área foliar sadia da soja. Piracicaba: Escola Superior de Agricultura “Luiz de Queiroz”, 2003. Dissertação de mestrado.

MIAN, M.A., et al. Registration of ‘Wyandot-14’soybean with resistance to soybean aphid and powdery mildew. Journal of Plant Registrations. 2016, 10(3), 246-250.

PEREIRA, D.G., et al. Evaluation of powdery mildew [Erisyphe diffusa (U. Braun & S. Takam)] severity in soybean genotypes, in field. Revista Caatinga. 2012, 25(3), 25-30.

PINELA, J., et al. Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today's society. Innovative Food Science & Emerging Technologies. 2017, 41(1), 160-171.

RITCHIE, S.W., et al. How a soybean plant develops. Ames: Iowa State University of Science and Technology, 1997. 20p (Special Report, 53).

RODRIGUES, V., BUENO, T.V. and TEBALDI, N.D. Biofertilizers in the control of tomato bacterial spot (Xanthomonas spp.). Summa Phytopathologica. 2016, 42(1), 94-96.

ROESE, A.D., RIBEIRO, P.J. and DE MIO, L.L.M. Microclimate in agrosilvopastoral system enhances powdery mildew severity compared to agropastoral and non-integrated crop. Tropical Plant Pathology. 2017, 5(42), 382-390.

SANTOS, H.A.A., et al. Control of wheat diseases using phosphites and acibenzolar-s-methyl alone or associated with piraclostrobina + epoxiconazole. Semina: Ciências Agrárias. 2011, 32(2), 433-442.

SHANER, G. and FINNEY, R.E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology. 1977, 67(8), 1051-1056.

SHITTU, H.O., AISAGBONHI, E. and OBIAZIKWOR, O.H. Plants’innate defence mechanisms against phytopathogens. Journal of Microbiology, Biotechnology and Food Sciences. 2021, 1(2021), 314-319.

SENTELHAS, P.C., et al. The soybean yield gap in Brazil-magnitude, causes and possible solutions for a sustainable production. Journal of Agricultural Science. 2015, 1(153), 1394–1411.

SILVA, V.A.S., JULIATTI, F.C. and SILVA, L.A.S. Interaction between partial genetic resistance and fungicides in the control of soybean Asian. Pesquisa Agropecuária Brasileira. 2007, 42(9), 1261-1268.

SILVA, O.C., et al. Phosphite sources and acibenzolar-S-methyl associated to fungicides on the control of foliar diseases in soybean. Tropical Plant Pathology. 2013, 38(1), 72-77.

TUPICH, F.L.B., et al. Impact of white mold control by fluazinam on soybean yield in the south of Paraná: Meta-analysis. Summa Phytopathologica. 2017, 43(2), 145-150.

USDA - UNITED STATES. Department of Agriculture. Market and trade data. 2019. Available from:

XAVIER, S.A., et al. Fotossíntese de folhas de soja infectadas por Corynespora cassiicola e Erysiphe diffusa. Summa Phytopathologica. 2015, 41(2), 156-159.

YULIA, E., et al. Resistance Potential to Powdery Mildew (Microsphaera diffusa Cooke and Peck) of Several Yellow and Black Soybean (Glycine max (L.) Merr) Genotypes. KnE Life Sciences. 2017, 2(6), 270-278.




How to Cite

GABARDO, G., DALLA PRIA, M., LUIS DA SILVA, H. and GABRIELLE HARMS, M., 2021. Alternative products to control powdery mildew in soybeans culture in field. Bioscience Journal [online], vol. 37, pp. e37052. [Accessed14 August 2022]. DOI 10.14393/BJ-v37n0a2021-53681. Available from:



Agricultural Sciences