Stoichiometric models for prediction of enteric methane production

Authors

DOI:

https://doi.org/10.14393/BJ-v38n0a2022-53647

Keywords:

Empirical evaluation, Predictive power, Short-chain fatty acids.

Abstract

This study aimed to empirically evaluate the adjustment quality of two stoichiometric models of methane production from diets that used different rumen fermentation modulators. We used the models proposed by Moss et al. (2000) and Blümmel et al. (1997). The data set consisted of 169 observations of in vitro methane production and volatile fatty acids (acetate, propionate, and butyrate) from dissertations, theses, and scientific articles. The model’s adequacy evaluation was only possible through combination of several statistical analyzes. The models were unable to predict the enteric methane precisely and accurately. Despite this, the model proposed by Moss et al. (2000) showed a better fit based on the mean bias (% of observed, MB), MEF, RMSEP, Cb and CCC measures compared to the model proposed by Blümmel et al. (1997). However, both models presented strong evidence against the general hypothesis H0: a = 0 & b = 1. Thus, the model proposed by MOSS et al. (2000) was more efficient, whereas the model by Blümmel et al. (1997) showed a better fit for diets with high availability of H2.

Downloads

Download data is not yet available.

References

ALEMU, A.W., et al. Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Animal Feed Science and Technology. 2011, 166(167), 761-778. https://doi.org/10.1016/j.anifeedsci.2011.04.054

ARAUJO, R.C. Óleos essenciais de plantas brasileiras como manipuladores da fermentação ruminal in vitro. São Paulo: Universidade de São Paulo, 2010. Doctoral thesis.

BANNINK, A., et al. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating dairy cows. Journal of Theoretical Biology. 2006, 238(1), 36–51. https://doi.org/10.1016/j.jtbi.2005.05.026

BECKER, E.G. Avaliação in vitro da inclusão de diferentes Concentrações de óleos na mitigação de Metano em ruminantes. 2015. 45 f. Dissertação (Mestrado em Agronomia). Programa de Pós-Graduação em Agronomia. Universidade Federal de Santa Maria, Santa Maria, 2015.

BENETEL, G. Uso de óleos essenciais como estratégia moduladora da fermentação ruminal para mitigação das emissões de metano por bovinos Nelore. 2018. 92 f. Tese (Doutorado em Qualidade e Produtividade Animal). Programa de Pós-graduação em Zootecnia e Engenharia de Alimentos. Universidade de São Paulo, São Paulo, 2018.

BIBBY, J. and TOUTENBURG, H. Prediction and Improved Estimation in Linear Models. London: John Wiley, 1977. ISBN 10: 047101656X

BLÜMMEL, M., MAKKAR, H.P.S. and BECKER, K. In vitro gas production: A technique revisited. Journal of Animal Physiology and Animal Nutrition. 1997, 77, 24–34. https://doi.org/10.1111/j.1439-0396.1997.tb00734.x

CALSAMIGLIA S., et al. Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science. 2007, 90(6), 2580–2595. https://doi.org/10.3168/jds.2006-644

CIEŚLAK, A., et al. Effect of vegetable oils on the methane concentration and population density of the rumen ciliate, Eremoplastron dilobum, grown in vitro. Journal of Animal and Feed Sciences. 2006, 15, 15–18. https://doi.org/10.22358/jafs/70132/2006

COCHRAN, W.G. and COX, G.M. Experimental Design. 2nd ed. New York: John Wiley, 1957.

CONE, J.W. and VAN GELDER, A.H. Influence of protein fermentation on gas production profiles. Animal Feed Science and Technology. 1999, 76, 251–264. https://doi.org/10.1016/S0377-8401(98)00222-3

DEMEYER, D.I. and NEVEL, C.J. Methanogenesis, an integrated part of carbohydrate fermentation and its control. In: MCDONALD, I.W. and DENT, J.B. and BLACKIE, M.J. Systems Simulation in Agriculture. London: Applied Science Publishers, 1979.

ELLIS, J.L., et al. Aspects of rumen microbiology central to mechanistic modeling of methane production in cattle. Journal of Agricultural Science. 2008, 146(2), 213-233. https://doi.org/10.1017/S0021859608007752

GARCIA, L.F. Avaliação in vitro de diferentes aditivos sobre e emissão de metano, a degradabilidade da matéria seca, a produção de gases, e as concentrações de amônia e ácidos graxos voláteis. 2013. 45 f. Dissertação (Mestrado Profissionalizante em Zootecnia). Programa de Pós-graduação em Zootecnia. Universidade Federal de Viçosa, Viçosa, 2013.

GUNAL, M., et al. Essential oils effect on rumen fermentation and biohydrogenation under in vitro conditions. Czech Journal of Animal Science. 2014, 59(10), 450–459. https://doi.org/10.17221/7708-CJAS

HEGARTY, R.S. and NOLAN, J.V. Estimation of ruminal methane production from measurement of volatile fatty acid production. In: MAKKAR, H.P.S. and Vercoe, P.E. (Eds.). Measuring Methane Production from Ruminants. Armidale: The University of New England Publishing Unit, 2007, pp. 69-92. https://doi.org/10.1007/978-1-4020-6133-24

JOHNSON, K.A. and JOHNSON, D.E. Methane emissions from cattle. Journal of Animal Science. 1995, 73(8), 2483–2492. https://doi.org/10.2527/1995.7382483x

KARA, K., AKTUG, E. and ÖZKAYA, S. Ruminal digestibility, microbial count, volatile fatty acids and gas kinetics of alternative forage sources for arid and semi-arid areas as in vitro. Italian Journal of Animal Science. 2016, 15(4), 673–680. https://doi.org/10.1080/1828051X.2016.1249420

KARA, K., et al. Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley-based concentrated mix feed of beef cattle. Journal of Applied Animal Research. 2018, 46(1), 178–183. https://doi.org/10.1080/09712119.2017.1284073

LIMA, D.S.F. Avaliação in vitro da inclusão de diferentes Concentrações de óleos na mitigação de Metano em ruminantes. Bandeirantes: Universidade Estadual do Norte do Paraná, 2016. Master's thesis.

LIN, L.I.A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989, 45(1), 255-268. https://doi.org/10.2307/2532051

LOAGUE, K. and GREEN, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology. 1991, 7, 51–73. https://doi.org/10.1016/0169-7722(91)90038-3

MALLMANN, L.S. Potencial de produção de metano de bovinos submetidos à dieta suplementada com resíduo úmido de cervejaria. 2013. 89 f. Tese (Doutorado em Engenharia Agrícola). Programa de Pós-graduação em Engenharia Agrícola. Universidade Estadual do Oeste do Paraná, Cascavel, 2013.

MEDJEKAL, S., et al. Volatile fatty acids and methane production from browse species of Algerian arid and semi-arid areas. Journal of Applied Animal Research. 2018, 46(1), 44–49. https://doi.org/10.1080/09712119.2016.1257432

MOLINA-ALCAIDE, E., et al. In vitro ruminal fermentation and methane production of different seaweed species. Animal Feed Science and Technology. 2017, 228, 1-12. https://doi.org/10.1016/j.anifeedsci.2017.03.012

MOSS, A.R., JOUANY, J.P. and NEWBOLD, C.J. Methane production by ruminants: its contribution to global warming. Annales de Zootechnie. 2000, 49, 231-253. https://doi.org/10.1051/animres:2000119f

NETER, J., et al. Applied Linear Statistical Models. 4th ed. Boston: McGraw-Hill Publishing Co., 1996.

NGULUVE, D.W. Composição química, produção in vitro de gases da fermentação entérica e ácidos graxos de cadeia curta de gramíneas forrageiras tropicais. São Paulo: Universidade de São Paulo, 2014. Doctoral thesis.

RAMIREZ-BRIBIESCA, J.E., et al. In vitro rumen fermentation and effect of protein fractions of canola meals on methane production. Scientia Agricola. 2018, 75(1), 12-17. https://doi.org/10.1590/1678-992x-2016-0096

RIVERA, A. R. Estudo da fermentação ruminal por bovinos consumindo feno de tifton 85 e concentrado com aditivos. 2006. 57 f. Dissertação (Mestrado em Zootecnia). Programa de Pós-graduação em Ciências Agrárias e Veterinárias. Universidade Estadual Paulista, Jaboticabal, 2006.

RODRIGUES, J.P.P. Suplementação com óleo de soja para bovinos: Efeitos sobre a digestão in vitro, desempenho de gado de leite e composição da gordura do leite. 2017. 112 f. Tese (Doutorado em Zootecnia). Programa de Pós-Graduação em Zootecnia, Universidade Federal de Viçosa, Viçosa, 2017.

RUSSEL, J. B. and STROBE, H.J. Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology. 1989, 55, 1-6.

SCHÖNFELD, P. and WOJTCZAK, L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. Journal of Lipid Research. 2016, 57(6), 943-954. https://doi.org/10.1194/jlr.R067629

SEJIAN, V., et al. Measurement and prediction of enteric methane emission. International Journal of Biometeorology. 2011, 55(1), 1- 16. https://doi.org/10.1007/s00484-010-0356-7

SOUZA, C.E. Utilização de compostos secundários de plantas para mitigação de metano em ruminantes. 2014. 86 f. Dissertação (Mestrado em Ciências Animais). Programa de Pós-graduação em Ciências Animais, Universidade de Brasília, Brasília, 2014.

St-PIERRE, N.R. Integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science. 2001, 84(4), 741–755. https://doi.org/10.3168/jds.S0022-0302(01)74530-4

TEDESCHI, L.O. Assessment of the adequacy of mathematical models. Agricultural Systems. 2006, 89, 225-247. https://doi.org/10.1016/j.agsy.2005.11.004

UGWUOWO, L.C., et al. Methane emissions and volatile fatty acid production from manure excreted by cattle fed diets containing lipids. The Journal of Animal & Plant Sciences. 20017, 27(3), 708-713.

VAN der HONING, Y., WIEMAN, B.J., STEG, A. and VAN DONSELAAR, B. The effect of fat supplementation of concentrates on digestion and utilization of energy by productive dairy cattle. Netherlands Journal of Agricultural Science. 1981, 29, 79-92.

VAN SOEST, P.J. Nutritional ecology of the ruminant. 2nd ed. Ithaca: Cornell University Press, 1994. ISBN: 0-8014-2772-X

WARNER, A.C.I. (Eds.). Digestion and metabolism in the ruminant. Armidale: The University of New England Publishing Unit, 1975, pp. 366–382.

WOLIN, M.J. A theoretical rumen fermentation balance. Journal of Dairy Science. 1960, 40(10), 1452-1459. https://doi.org/10.3168/jds.S0022-0302(60)90348-9

ZACHARIAS, S., HEATWOLE, C.D. and COAKLEY, C.W. Robust quantitative techniques for validating pesticide transport models. Transactions of the American Society of Agricultural Engineers. 1996, 39, 47–54. https://doi.org/10.13031/2013.27479

Downloads

Published

2022-08-05

How to Cite

SILVA DE OLIVEIRA, T., MAGNO FERNANDES, A., FONSÊCA PROCESSI, E., FERREIRA BAFFA, D. and GABRIEL CAMILO, M., 2022. Stoichiometric models for prediction of enteric methane production. Bioscience Journal [online], vol. 38, pp. e38038. [Accessed12 August 2022]. DOI 10.14393/BJ-v38n0a2022-53647. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/53647.

Issue

Section

Agricultural Sciences