Microbial biostimulants as alternatives for the rooting of olive tree cuttings





Mycorrhiza, Olea europaea L. Rhizobacteria, Rhizogenic potential, Rooted cuttings.


Currently, southern Minas Gerais (MG) state is an important producer of different olive tree (Olea europaea L.) cultivars because, in this region, the plants can differentiate the buds to produce flowers and fruit. To stimulate the rooting of cuttings, the synthetic hormone indole-3-butyric acid (IBA) at a concentration of 3 g L−1 is used commercially. However, few studies have investigated arbuscular mycorrhizal fungi (AMF), isolated or combined with rhizobacteria, as a biotechnological tool to produce hormones that function in the rooting of olive tree cuttings. The aim of this study was to evaluate the capacity of different AMF species (Rhizophagus clarus, Gigaspora rosea, or Acaulospora scrobiculata), combined or not with IBA or rhizobacteria, to promote the rooting of three olive tree cuttings (Arbequina, Grappolo 541, and Maria da Fé) with potential for cultivation in this region. For this, three experiments were conducted at the Experimental Farm of EPAMIG in Maria da Fé (MG), and the rooting potential of the olive tree cuttings inoculated with I) AMF, II) AMF combined with increasing doses of IBA, and III) AMF combined with three isolates of rhizobacteria was evaluated. The inoculation of olive tree cuttings of cultivars Arbequina, Grappolo 541, and Maria da Fé with Rhizophagus clarus, Gigaspora rosea, or Acaulospora scrobiculata combined or not with IBA or rhizobacteria did not significantly promote rooting. Alternative forms of rooting olive tree cuttings are still a challenge, and further studies for standardizing methodologies and experimental conditions are required.


Download data is not yet available.


ABDEL-RAHMAN, S.A. and EL-NAGGAR, A.R. Promotion of rooting and growth of some types of bougainvilleas cutting by plant growth promoting rhizobacterial (PGPR) and arbuscular mycorrhyzal fungi (AMF) in combination with indole-3-butyric acid (IBA). International Journal of Science and Research. 2014, 11(3), 97-108.

AMRI, E. Influence of arbuscular mycorrhizal fungi on rooting ability of auxin treated stem cuttings of Dalbergia melanoxylon (Guill and Perr.). Research Journal of Botany. 2015, 10(3), 88–97, 2015. https://doi.org/10.3923/rjb.2015.88.97

BARAZANI, O., et al. Local old olive landrace varieties in Israel — Valuable plant genetic resources in olive cultivation olive cultivation. Israel Journal of Plant Sciences. 2008, 56(3), 265 -271. https://doi.org/10.1560/IJPS.56.3.265

BAREA, J.M. and AZCÓN-AGUILAR, C. Production of plant growthregulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Applied Environmental Microbiology. 1982, 43(4), 810-813.

BARROSO, J., NECES, H.C. and PAIS, M. Production of índole-3-ethanol and índole-3-acetic acid by the mycorrhyzal fungus of Oprhrys lutea (Orchidaceae). New Phytologist. 1986, 103(4), 754-749. https://doi.org/10.1111/j.1469-8137.1986.tb00849.x

BENSIDHOUM, L., et al. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting , insecticidal and antifungal activities. European Journal of Soil Biology. 2016, 75, 38–46. https://doi.org/10.1016/j.ejsobi.2016.04.006

BERRUTI, A., et al. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology. 2016, 6, 1–13. https://doi.org/10.3389/fmicb.2015.01559

BHOWMIK, S.N. and SINGH, C.S. Mass multiplication of AM inoculum: effect of plant growth-promoting rhizobacteria and yeast in rapid culturing of Glomus mosseae. Current Science. 2004, 86(5), 705-709.

BUEE, M., et al. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Molecular Plant-Microbe Interactions. 2000, 13(6), 693–698. https://doi.org/10.1094/MPMI.2000.13.6.693

CASARIN, J.V., et al. Productivity and rooting of olive mini-cuttings grown in a clonal mini-garden according to season. Comunicata Scientiae. 2017, 8(4), 537–543. https://doi.org/10.14295/CS.v8i4.2330

CASSÁN, F., VANDERLEYDEN, J. and SPAEPEN, S. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation. 2014, 33, 440–459. https://doi.org/10.1007/s00344-013-9362-4

CHERYL, L. and PATTEN, B.R.G. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology. 2002, 68(8), 3795–3801. https://doi.org/10.1128/AEM.68.8.3795

CITERNESI, A.S., VITAGLIANO, C. and GIOVANNETTI, M. Plant growth and root system morphology of Olea europaea L. rooted cuttings as influenced by arbuscular mycorrhizas. The Journal of Horticultural Science and Biotechnology. 1998, 73(5), 647–654. https://doi.org/10.1080/14620316.1998.11511028

CONAB. Indicadores da Agropecuária. Observatório Agrícola, 2019, 28, 8, 1–118.

COSME, M. and WURST, S. Interactions between arbuscular mycorrhizal fungi, hizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biology and Biochemistry. 2013, 57, 436-443. https://doi.org/10.1016/j.soilbio.2012.09.024

DRUEGE, U., FRANKEN, P. and HAJIREZAEI, M. R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Frontiers in Plant Science. 2016, 7, 1–14. https://doi.org/10.3389/fpls.2016.00381

DU, N., et al. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Microbiological Research. 2017, 202, 1–10. https://doi.org/10.1016/j.micres.2017.04.013

EK, M., LJUNGQUIST, P.O. and STENSTROM, E. Indole-3-acetic acid production by mycorrhizal fungi determined by gas chromatography-mass spectrometry. New Phytologist. 1983, 94(3), 401–407. https://doi.org/10.1111/j.1469-8137.1983.tb03454.x

ERCISLI, S., et al. Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regulation. 2003, 41, 133–137. https://doi.org/10.1023/A:1027307720934

ERTURK, Y., et al. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Research. 2010, 43(1), 91–98. https://doi.org/10.4067/S0716-97602010000100011

ETMINANI, F. and HARIGHI, B. Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. The Plant Pathology Journal. 2018, 34(3), 208–217. https://doi.org/10.5423/PPJ.OA.07.2017.0158

FERNÁNDEZ, I., et al. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. Journal of Chemical Ecology. 2014, 40, 791–803. https://doi.org/10.1007/s10886-014-0473-6

FERREIRA, G.M.R., et al. Fungos micorrízicos arbusculares no desenvolvimento de mudas de oliveira (Olea europaea L.) cultivadas no sul de Minas Gerais. Revista Brasileira de Ciência do Solo. 2015, 39(2), 361-366. https://doi.org/10.1590/01000683rbcs20140082

GERDEMANN, J.W. and NICOLSON, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society. 1963, 46(2), 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0

KOC, A., et al. Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline, membrane permeability and growth of strawberry (Fragaria x ananassa) under salt stress. Journal of Applied Botany and Food Quality. 2016, 89, 89-97. https://doi.org/10.5073/JABFQ.2016.089.011

KUMAR, M., et al. Growth promoting characteristics of rhizobacteria and am fungi for biomass amelioration of Zea mays. Archives of Biological Sciences. 2015, 67(3), 877-887. https://doi.org/10.2298/ABS141029047K

KALDORF, M. and LUDWIG-MÜLLER, J. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiologia Plantarum. 2000, 109(1), 58–67. https://doi.org/10.1034/j.1399-3054.2000.100109.x

MARIOSA, T. N., et al. O. Rizobactérias e desenvolvimento de mudas a partir de estacas semilenhosas de oliveira (Olea europeae L.). Revista de Ciências Agrárias. 2018, 60(4), 302–306. https://doi.org/10.4322/rca.2447

MENNA, P., et al. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Systematic and Applied Microbiology. 2006, 29(4), 315–332. https://doi.org/10.1016/j.syapm.2005.12.002

MINAXI, S.J., CHANDRA, S. and NAIN, L. Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of Soil Science and Plant Nutrition. 2013, 13(2), 511-525. https://doi.org/10.4067/S0718-95162013005000040

MONTERO-CALASANZ, M.C., et al. Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems. Spanish Journal of Agricultural Research. 2013, 11(1), 146–154. https://doi.org/10.5424/sjar/2013111-2686

MONTERO-CALASANZ, M.C., et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Systematic and Applied Microbiology. 2014, 37(5), 342–350. https://doi.org/10.1016/j.syapm.2014.04.004

NADEEM, S. M., et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances. 2014, 32(2), 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005

PACIFICI, E., POLVERARI, L. and SABATINI, S. Plant hormone cross-talk : the pivot of root growth. Journal of Experimental Botany. 2015, 66(4), 1113–1121. https://doi.org/10.1093/jxb/eru534

PERALTA, K.D., et al. Production of phytohormones, siderophores and population fluctuation of two root-promoting rhizobacteria in Eucalyptus globulus cuttings. World Journal of Microbiology and Biotechnology. 2012, 28, 2003–2014. https://doi.org/10.1007/s11274-012-1003-8

PIO, R., et al. Enraizamento de diferentes tipos de estacas de oliveira (Olea europaea L.) utilizando ácido indolbutírico. Ciência e Agrotecnologia. 2005, 29, 562-567. https://doi.org/10.1590/S1413-70542010000200010

PORFÍRIO, S., et al. Reviewing current knowledge on olive (Olea europaea L.) adventitious root formation. Scientia Horticulturae. 2016, 198, 207–226. https://doi.org/10.1016/j.scienta.2015.11.034

PRETTY, J. Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions B. 2008, 363(1491), 447–465. https://doi.org/10.1098/rstb.2007.2163

RAI, R., et al. Isolation, characterization and evaluation of the biocontrol potential of Pseudomonas protegens RS-9 against Ralstonia solanacearum in tomato. Indian Journal of Experimental Biology. 2017, 55(9), 595-603.

RAPOPORT, H. F., COSTAGLI, G. and GUCCI, R. The effect of water deficit during early fruit development on olive fruit morphogenesis. Journal of the American Society for Horticultural Science. 2019, 129(1), 121–127. https://doi.org/10.21273/jashs.129.1.0121

ROSA, D.D., et al. Rooting of semihardwood cuttings of olive : indolbutyric acid, calcium and Azospirillum brasilense. Comunicata Scientiae. 2018, 9(1), 34–40. https://doi.org/10.14295/CS.v9i1.977

SCAGEL, C.F. Enhanced rooting of kinnikinnick cuttings using mycorrhizal fungi in rooting substrate. Horttechnology. 2004, 14(3), 355–363. https://doi.org/10.21273/HORTTECH.14.3.0355

RUFFO, M.L., et al. Evaluating management factor contributions to reduce corn yield gaps. Agronomy Journal Abstract - Crop Economics, Production & Management. 2015, 107(2), 495. https://doi.org/10.2134/agronj14.0355

SILVA, L.F.O., et al. Variação na qualidade do azeite em cultivares de oliveira. Bragantia. 2012, 71(2), 202–209. https://doi.org/10.1590/S0006-87052012000200008

SILVA, T.F., et al. Bactérias diazotróficas não simbióticas e enraizamento de estacas semilenhosas de oliveira (Olea europaea L.). Ciência Florestal. 2017, 27(1), 61-71. https://doi.org/10.5902/1980509826447

SOUZA, P.V.D., et al. Influência de substratos e fungos micorrízicos no enraizamento de estacas de laranjeira (Citrus sinensis Osb. cv. Valência). Pesquisa Agropecuária Gaúcha. 1995, 1(1), 37–40.

TEIXEIRA, D.A., et al. Rhizobacterial promotion of eucalypt rooting and growth. Brazilian Journal of Microbiology. 2007, 38(1), 118-123. https://doi.org/10.1590/S1517-83822007000100025

VIEIRA, V.C.S., MELLONI, R. and NETO, J.V. Avaliação da interação micorrízica em cultivares de oliveira (Olea europea L.). Revista Brasileira de Ciência do Solo. 2011, 35(6), 1885-1892. https://doi.org/10.1590/S0100-06832011000600005

VITORAZI FILHO, J.A., et al. Crescimento de mudas de maracujazeiro-doce inoculadas com fungos micorrízicos arbusculares e bactérias diazotróficas sob diferentes doses de fósforo. Revista Brasileira de Fruticultura. 2012, 34(2), 442-450. https://doi.org/10.1590/S0100-29452012000200017

WANG, W., et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant. 2017, 10(9), 1147–1158. https://doi.org/10.1016/j.molp.2017.07.012

YAKHIN, O.I., et al. Biostimulants in plant science: a global perspective. Frontier in Plant Science. 2017, 7, 1-32. https://doi.org/10.3389/fpls.2016.02049




How to Cite

FERREIRA, G.M.. dos R., SILVA, L.F. de O., PASQUAL, M., MELLONI, R., MAGNO QUEIROZ LUZ, J. and DÓRIA , J., 2022. Microbial biostimulants as alternatives for the rooting of olive tree cuttings. Bioscience Journal [online], vol. 38, pp. e38091. [Accessed19 July 2024]. DOI 10.14393/BJ-v38n0a2022-53570. Available from: https://seer.ufu.br/index.php/biosciencejournal/article/view/53570.



Agricultural Sciences