Organic fertilization as an alternative to the chemical in cherry tomato growing under irrigation depths




Chemical and Organic Fertilizer, Solanum lycopersicum L, Water Deficit


Two experiments were carried out to evaluate the effects of organic fertilization as an alternative to the chemical on the yield and quality of cherry tomato grown under different irrigation depths in protected environment, in 2013 and 2014. The experimental design was in randomized blocks (5 x 3 factor), with five irrigation depths as the factors (70%, 85%, 100%, 115% and 130% of ETc) and three types of fertilization: no fertilized soil (control), NPK fertilized soil (Chemical) and earthworm humus fertilized soil (organic). The following were evaluated in this study: water use efficiency, number of aborted flowers, total soluble solid content, transverse and longitudinal diameter of the fruits, number of fruits and fruit yield per plant. Organic fertilization is an alternative to the chemical with no losses in yield and fruit quality. The increase in water depth enhanced yield and fruit diameters and reduced water use efficiency. Water use efficiency was more sensitive to the increments in water depth than to different types of fertilization. The values ​​of °Brix obtained in the experiment were classified as acceptable for the domestic and international market when submitted to organic fertilization.


Download data is not yet available.


CANTORE, V., et al. Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.). Agricultural Water Management. 2016, 167(1), 53-61.

CHEN, J., et al. Quantitative response ofgreenhouse tomato yield and quality to water deficit at different growthstages. Agricultural Water Management. 2013, 129(1), 152-162.

DUARTE, G.R.B., et al. Measure and estimation of the evapotranspiration of tomato plants cultivated with organic fertilization in protected ambient. Semina: Ciências Agrárias. 2010, 31, 563-574.

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Sistema brasileiro de classificação de solos. 3rd ed. Brasília: Centro Nacional de Pesquisa de Solos; Rio de Janeiro, RJ: Embrapa Solos, 2013.

FAVATI, F., et al. Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae. 2009, 122(4), 562-571.

FERNANDES, C., CORÁ, J.E. and ARAÚJO, J.A.C. Utilização do tanque Classe A para a estimativa da evapotranspiração de referência. Engenharia Agrícola. 2004, 24(1), 46-50.

FERNANDES, C., CORÁ, J.E. and BRAZ, L.T. Classificação de tomate-cereja em função do tamanho e peso dos frutos. Horticultura Brasileira. 2007, 25(2), 275-278.

FERREIRA, D.F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia. 2014, 35(6), 1039-1042.

FERREIRA, M.M.M., FERREIRA, G.B. and FONTES, P.C.R. Eficiência da adubação nitrogenada do tomateiro em duas épocas de cultivo. Revista Ceres. 2010, 57(2), 263-273.

GOMES, D.P., et al. Growth and production of tomato fertilized with ash and castor cake and under varying water depths, cultivated in organic potponics. Acta Scientiarum. Agronomy. 2017, 39(2), 201-209.

GUAN, D.H., et al. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil & Tillage Research. 2015, 146(1), 286-295.

KOLAYLI, S., et al. Comparative study of chemical and biochemical properties of different melon cultivars: standard, hybrid, and grafted melons. Journal of Agricultural and Food Chemistry. 2010, 58(17), 9764-9769.

KUMAR, S. and DEY, P. Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry. Scientia Horticulturae. 2011, 127(3), 318-324.

LIU, H., et al. Drip Irrigation Scheduling for Tomato Grown in Solar Greenhouse Based on Pan Evaporation in North China Plain. Journal of Integrative Agriculture. 2013, 12(1), 520-531.

MAIA, J.T.L.S., et al. Adubação orgânica em tomateiros do grupo cereja. Revista Biotemas. 2013, 26(1), 37-44.

MAROUELLI, W.A., SILVA, H.R. and MADEIRA, N.R. Uso da água e produção de tomateiro para processamento em sistema de plantio direto com palhada. Pesquisa Agropecuária Brasileira. 2006, 41(9), 1399-1404.

MEDEIROS, R.F., et al. Crescimento inicial do tomateiro-cereja sob irrigação com águas salinas em solo com biofertilizantes bovino. Revista Brasileira de Engenharia Agrícola e Ambiental. 2011, 15(5), 505-511.

MELLO, G.A.B., et al. Organic cultivation of onion under castor cake fertilization and irrigation depths. Acta Scientiarum. Agronomy. 2018, 40(1), e34993.

MONTE, J.A., et al. Growth analysis and yield of tomato crop under different irrigation depths. Revista Brasileira de Engenharia Agrícola e Ambiental. 2013, 17(9), 926-931.

MUELLER, S., et al. Produtividade de tomate sob adubação orgânica e complementação com adubos minerais. Horticultura Brasileira. 2013, 31(1), 86-92.

NIEDZIELA JUNIOR, C.E., et al. Effects of N–P–K deficiency and temperature regime on the growth and development of Lilium longiflorum ‘Nellie White’ during bulb production under phytotron conditions. Scientia Horticulturae. 2008, 116(4), 430-436.

NOVAIS, R.F., et al. Fertilidade do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 2007.

PATANÈ, C., TRINGALI, S., and SORTINO, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae. 2011, 129(4), 590-596.

PINHO, L., et al. Nutritional properties of cherry tomatoes harvested at different times and grown in an organic cropping. Horticultura Brasileira. 2011, 29(2), 205-211.

PRECZENHAK, A.P., et al. Caracterização agronômica de genótipos de minitomate. Horticultura Brasileira. 2014, 32(2), 348-356.

REIS, L.S., SOUZA, J.L. and AZEVEDO, C.A.V. Evapotranspiração e coeficiente de cultivo do tomate caqui cultivado em ambiente protegido. Revista brasileira de engenharia agrícola ambiental. 13(3), 289-296.

SANTANA, M.J., et al. Resposta do tomateiro irrigado a níveis de reposição de água no solo. Revista Irriga. 2010, 15(4), 443-454.

SILVA, A.C., et al. Avaliação de linhagens de tomate cereja tolerantes ao calor sob sistema orgânico de produção. Revista Caatinga. 2011, 24(3), 33-40.

SILVA, J.M., et al. Cultivo do tomateiro em ambiente protegido sob diferentes taxas de reposição da evapotranspiração. Revista Brasileira de Engenharia Agrícola e Ambiental. 2013, 17(1), 40-46.

TAIZ, L. and ZEIGER, E. Fisiologia vegetal. 5th ed. Porto Alegre: Artmed, 2013.

TONFACK, L.B., et al. Impact of organic and inorganic fertilizers on tomato vigor, yield and fruit composition under tropical andosol soil conditions. Fruits. 2009, 64(3), 167-177.

WANG, X. and XING, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: a principal component analysis. Scientific Reports. 2017, 7(350), 1-13.

YANAR, D., et al. Effect of different organic fertilizers on yield and fruit quality of ındeterminate tomato (Lycopersicon esculentum). Scientific Research and Essays. 2011, 6(17), 3623-3628.

ZUBA, S.N., et al. Yield and nutrition of tomato using different nutrient sources. Horticultura Brasileira. 2011, 29(1), 50-56.




How to Cite

DE MATOS, R.M., SILVA, P.F. da, NETO, J.D., LIMA, A.S. de, LIMA, V.L.A. de and SABOYA, L.M.F., 2021. Organic fertilization as an alternative to the chemical in cherry tomato growing under irrigation depths. Bioscience Journal [online], vol. 37, pp. e37006. [Accessed3 March 2024]. DOI 10.14393/BJ-v37n0a2021-48270. Available from:



Agricultural Sciences