Potential degradation and colonization time of ruminal microorganisms on the particles of different oilseeds-crushed, and its chemical composition
DOI:
https://doi.org/10.14393/BJ-v37n0a2021-48122Keywords:
By-product, Feed Evaluation, In Situ Degradability, Rumen.Abstract
This study was carried out to evaluate by-product of the biodiesel industry as canola, safflower, forage turnip, and soybean crushed on the chemical composition, in situ degradability, and colonization time. Canola (Brassica napus L. var. oleifera), safflower (Carthamus tinctorius L.), forage turnip (Raphanus stivus L. var. oleiferus Metzg), and soybean (Glycine max) grains went through the oil extraction process by means of a cold pressing, resulting in the oilseeds-crushed. The treatments identification included: CAN – Canola crushed; SAF – Safflower crushed; TUR – Forage turnip crushed; and SOY – Soybean crushed. The oilseed-crushed treatments were quantified about mineral (calcium, magnesium, copper, iron, manganese, zinc, phosphorus and potassium), chemical composition (dry matter, ash, organic matter, crude protein, ether extract, neutral detergent fiber, acid detergent fiber, total carbohydrates, non-fibrous carbohydrates, and total digestible nutrient contents), In situ degradability, and colonization time. Magnesium, phosphorus, and zinc showed the greater values for TUR treatment 3.46, 27.4, 39.8, respectively, when compared to the other oilseed-crushed treatments. The TUR treatment had the lowest organic matter, whereas had the greater (p≤0.05; TUR and SOY treatments) for the non-fibrous carbohydrates. Ether extract was not affected (p>0.05) with the different oilseed-crushed treatments. Neutral detergent fiber was affected (p≤0.05) for CAN and SAF treatments with the greater values, 344 and 500 g/kg of dry matter, respectively. Soluble and potentially degradable fractions for SAF treatment showed similar results. Whereas the constant rate of degradation, presented the lowest value when compared to the other treatments. Effective degradability of crude protein was greater for CAN 63.2% than SOY 65.9% treatment, which had the lowest value. Potential degradability of crude protein did not differ between treatments. Colonization time for dry matter and crude protein were similar between TUR and SOY treatments. In conclusion, oilseeds-crushed from the biodiesel production can be targeted/used, as feed with great protein and energetic potential in the ruminant’s production, considering the need of correct formulation and ingredients knowledge.
Downloads
References
ABDALLA, A.L., et al. Utilização de subprodutos da indústria de biodiesel na alimentação de ruminantes. Revista Brasileira de Zootecnia. 2008, 37, 260-268. http://dx.doi.org/10.1590/S1516-35982008001300030
Agricultural and Food Research Council (AFRC). Energy and Protein requeriments of ruminant. Wallingford: CAB International, 1993. Available from: https://www.cabi.org/bookshop/book/9780851988511/
Association of Official Analytical Chemistry (AOAC). Official methods of analysis of AOAC International. 18th ed. Gaithersburg: AOAC International, 2005.
BASSI, M.S., et al. Oilseeds in Zebu cattle dieta: intake, digestibility and performance. Revista Brasileira de Zootecnia. 2012, 41(2), 353-359. https://doi.org/10.1590/S1516-35982012000200018
BRÁS, P. Caracterização nutricional de co-produtos da extração de óleo em grãos vegetais em dietas de ovinos. Nova Odessa: Instituto de Zootecnia, 2011. Available from: http://www.iz.sp.gov.br/pdfs/1301660280.pdf
BUSANELLO, M., et al. A meta-analysis on in situ ruminal degradability of grains and meal for energy concentrate feeds. Emirates Journal of Food & Agriculture. 2018, 30(3), 240-244. https://doi.org/10.9755/ejfa.2018.v30.i3.1638
CAPELLE, E.R., et al. Estimativas de valor energético a partir de características químicas e bromatológicas dos alimentos. Revista Brasileira de Zootecnia. 2001, 30, 1837-1856. http://dx.doi.org/10.1590/S1516-35982001000700022
Companhia Nacional de Abastecimento (CONAB). Conjuntura mensal da Canola, 2013. Available from: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_04_09_10_27_26_boletim_graos_abril_2013.pdf.
CUSTÓDIO, D.P., et al. Ração: alimento animal perecível. Revista Eletrônica Faculdade Montes Belos. 2005, 1(2), 131-147.
DeMORI, C., FERREIRA, P.E.P. and TOMM, G.O. Aspectos Econômicos e Conjunturais da Cultura da Canola no Mundo e no Brasil. Passo Fundo: Embrapa Trigo, 2014. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/103763/1/2014-documentos-online149.pdf
DETMANN, E., 2010. Fibra na nutrição de novilhas leiteiras. In: PEREIRA, E.S., PIMENTEL, P.G., QUEIROZ, A. C. and MIZUBUTI, I.Y, eds. Novilhas Leiteiras, Fortaleza: Graphiti, pp. 253-302.
GOES, R.H.T.B., et al. Torta de girassol em substituição ao farelo de soja nos suplementos de novilhas: desempenho e características de carcaça. Revista Brasileira de Saúde e Produção Animal. 2012, 13(2), 396-409. https://doi.org/10.1590/S1519-99402012000200009
GOES, R.H.T.B., et al. Degradabilidade ruminal da matéria seca e proteína bruta, e tempo de colonização microbiana de oleaginosas, utilizadas na alimentação de ovinos. Acta Scientiarum. Animal Sciences. 2011, 33(4), 373-378. http://dx.doi.org/10.4025/actascianimsci.v33i4.11388
GOES, R.H.T.B., et al. Degradabilidade in situ dos grãos de crambe, girassol e soja, e de seus coprodutos em ovinos. Acta Scientiarum. Animal Sciences. 2010, 32(3), 271-277. http://dx.doi.org/10.4025/actascianimsci.v32i3.7913
GROTTO, H.Z.W. Metabolismo do ferro: uma revisão sobre os principais mecanismos envolvidos em sua homeostase. Revista Brasileira de Hematologia e Hemoterapia. 2008, 30(5), 390-397. http://dx.doi.org/10.1590/S1516-84842008000500012
HUNTINGTON, J.A. and GIVENS, D.I. The in situ technique for studying the rumen degradation of feeds: A review of the procedure. Nutrition Abstracts and Review (Serie B). 1995, 65, 63-93.
KOZLOSKI, G.V. Bioquímica dos ruminantes. Santa Maria: Editora UFSM, 2011.
MALAVOLTA, E., VITTI, G.C. and OLIVEIRA, S.A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2nd ed. Piracicaba: Potafós, 1997.
MARCIANO, R., et al. Avaliação do resíduo de nabo forrageiro extraído da produção de biodiesel como suplemento para bovinos de corte em pastagens. Revista Brasileira de Saúde e Produção Animal. 2008, 9(1), 45-46.
MERTENS, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International. 2002, 85(6), 1217-1240.
NASRI, M.H.F., et al. Effect of heat processing on ruminal degradability and intestinal disappearance of nitrogen and amino acids in Iranian whole soybean. Livestock Science. 2008, 113(1), 43-51. https://doi.org/10.1016/j.livsci.2007.02.017
National Research Council (NRC). Nutrient requirements of dairy cattle. 7th ed. Washington: National Academy Press, 2001.
NOCEK J.E. In situ and others methods to estimate ruminal protein and energy digestibility. Journal of Dairy Science. 1988, 71, 2051-2069. https://doi.org/10.3168/jds.S0022-0302(88)79781-7
Office of the Gene Technology Regulator (OGTR). The biology of Brassica napus L. (Canola) and Brassica juncea (L.) Czern. & Coss. (Indian mustard). Austrália: Office of the Gene Technology Regulator, 2016. Available from: https://www1.health.gov.au/internet/ogtr/publishing.nsf/Content/5DCF28AD2F3779C4CA257D4E001819B9/$File/Biology%20of%20Canola%20and%20Indian%20mustard%20February%202017.pdf
OLIVEIRA, R.L., et al. Biodiesel industry by-products used for ruminant feed. Revista Colombiana de Ciencias Pecuarias. 2012, 25(4), 625-638.
ØRSKOV, E.R. and McDONALD, I. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. Journal of Agricultural Science. 1979, 92, 499-503. https://doi.org/10.1017/S0021859600063048
PATINÕ, H.O., et al. Avaliação de métodos de ajuste da curva de degradação ruminal da FDN em forragens. In: Reunião Anual da Sociedade Brasileira de Zootecnia, Piracicaba. Anais... Piracicaba: SBZ. p.970, 2001.
PATUSSI, R.A., et al. Composição química, degradabilidade ruminal e tempo de colonização de suplementos concentrados com torta de crambe. Boletim de Indústria Animal. 2015, 72(3), 200-208. https://doi.org/10.17523/bia.v72n3p200
PEREIRA, L.G.R., et al., 2009. O milho na alimentação de gado de leite. In: GONÇALVES, L.C., BORGES, I. and FERREIRA, P.D.S, eds. Alimentos para gado de leite, Belo Horizonte: FEPMVZ, pp. 240-269.
RODRIGUES, F.V. and RONDINA, D. Alternativas de uso de subprodutos da cadeia do Biodiesel na alimentação de ruminantes: Glicerina bruta. Acta Veterinaria Brasilica. 2013, 7, 1-99. https://doi.org/10.21708/avb.2013.7.2.2801
SAS Institute Inc. SAS/STAT ® 9.1 User’s Guide. Cary, NC: SAS Institute Inc, 2004. Available from: https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/stat_ug_7313.pdf
SEO, J.K., et al. Effects of synchronization of carbohydrate and protein supply on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein steers. Asian Australasian Journal of Animal Science. 2010, 23(11), 1455-1461. https://doi.org/10.5713/ajas.2010.10247
SILVA, D.J. and QUEIROZ, A.C. Análise de alimentos: métodos químicos e biológicos. 3rd ed. Viçosa: UFV, 2002.
SNIFFEN, C.J., et al. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science. 1992, 70(11), 3562-3577. https://doi.org/10.2527/1992.70113562x
SOUZA, A.D.V., et al. Caracterização química de sementes e tortas de pinhão‑manso, nabo‑forrageiro e crambe. Pesquisa Agropecuária Brasileira. 2009, 44(10), 1328-1335. https://doi.org/10.1590/S0100-204X2009001000017
SUTTLE, N.F. Mineral Nutrition of Livestock. 4th ed. Cambridge: CABI North American Office, 2010.
TOMM, G.O. Situação em 2005 e perspectivas da cultura de canola no Brasil e em países vizinhos. Passo Fundo: Embrapa Trigo, 2005. Available from: http://www.cnpt.embrapa.br/biblio/bp/p_bp26.htm
WITTER, S. and TIRELLI, F., 2014. Polinizadores nativos presentes em lavouras de canola no Rio Grande do Sul. In: WITTER, S., NUNES-SILVA, P. and BLOCHTEIN, B., eds. Abelhas na polinização de canola – benefícios ambientais e econômicos. Porto Alegre: Edipucrs, p. 44.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rafael Henrique de Tonissi Buschinelli de Goes, Kennyson Alves de Souza, Milene Puntel Osmari, Thiago José de Lira Cardoso, Raquel Tenório de Oliveira, Nayara Gonçalves da Silva, Jefferson Rodrigues Gandra, Luiz Carlos Ferreira de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.