Análisis de aprendizaje en MOOC: Análisis Educativo Big Data de Cursos Telelab
DOI:
https://doi.org/10.14393/par-v2n1-2017-45194Palabras clave:
Learning Analytics, MOOCs, Big Data Educacional, TELELABResumen
En este trabajo se analiza la aplicación de técnicas de aprendizaje Analytics (LA) en los cursos Telelab de masas, centrándose en la aplicación de los MOOCs proceso de enseñanza aprendizaje, a través del análisis y la predicción de grandes volúmenes de datos Educación (BDE). Para ello, llevamos a cabo una revisión sistemática de estos temas y aplicamos técnicas de LA en el análisis de los datos Telelab. Se observó la dificultad de trabajar con grandes cantidades de datos educativos heterogéneos (alrededor de 56.000 estudiantes) con el fin de obtener información relevante para mejorar la experiencia de viaje. Sin embargo, el uso de técnicas estadísticas, algunos patrones pudieron ser localizados, los puntos fuertes y débiles de Telelab que necesitan atención.
Descargas
Citas
CHATTI, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5-6), 318-331.
CHOUNTA, I.-A., Hecking, T., Hoppe, H.U., Avouris, N.: Two make a network: using graphs to assess the quality of collaboration of dyads. In: Baloian, N., Burstein, F., Ogata, H., Santoro, F., Zurita, G. (eds.) CRIWG 2014. LNCS, vol. 8658, pp. 53–66. Springer, Heidelberg (2014)
COOK, D. J., & Das, S. K. (2012). Pervasive computing at scale: Transforming the state of the art. Pervasive & Mobile Computing, 8(1), 22–35.
DRACHSLER, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): a reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281-290.
FOURNIER, H., Kop, R., & Sitlia, H. (2011). The value of learning analytics to networked learning on a personal learning environment. In P. Long, G.
GOGGINS, S. P., Galyen, K. D., Petakovic, E., & Laffey, J. M. (2016). Connecting performance to social structure and pedagogy as a pathway to scaling learning analytics in MOOCs: an exploratory study. Journal of Computer Assisted Learning, 32(3), 244-266.
GRELLER, W., & Drachsler, H. (2012). Translating Learning into Numbers: A Generic Framework for Learning Analytics. Educational technology & society,15(3), 42-57.
GRELLER, W., Ebner, M., & Schön, M. (2014, June). Learning analytics: From theory to practice–data support for learning and teaching. In International Computer Assisted Assessment Conference (pp. 79-87). Springer International Publishing.
HOPPE, H.U., Engler, J., Weinbrenner, S.: The impact of structural characteristics of concept maps on automatic quality measurement. In: International Conference of the Learning Sciences (ICLS 2012), Sydney, Australia (2012)
KHALIL, M., & Ebner, M. (2016). What Massive Open Online Course (MOOC) Stakeholders Can Learn From Learning Analytics? arXiv preprint arXiv:1606.02911.
KHALIL, M., Taraghi, B., & Ebner, M. (2016). Engaging Learning Analytics in MOOCS: the good, the bad, and the ugly. arXiv preprint arXiv:1606.03776.
LÉVY, Pierre. Cibercultura. São Paulo: Editora 34, 1999.
PAPAMITSIOU, Z., & Economides, A. (2014). Learning Analytics and Educational Data Mining in Practice: A Systematic Literature Review of Empirical Evidence. Educational Technology & Society, 17 (4), 49–64
SIEMENS, G., & Long, P. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE review, 46(5), 30.
TABAA, Y., & Medouri, A. (2013). LASyM: A learning analytics system for MOOCs. International Journal of Advanced Computer Science and Applications (IJACSA), 4(5).
WATTERS, A., Got MOOC? Massive open online courses are poised to change the face o f education. School Library Journal. February 2013; Vol. 58(2) pgs.3638.
YOUSEF, A. M. F., Chatti, M. A., Schroeder, U., & Wosnitza, M. (2014, July). What drives a successful MOOC? An empirical examination of criteria to assure design quality of MOOCs. In 2014 IEEE 14th International Conference on Advanced Learning Technologies (pp. 44-48). IEEE.
ZHENG, Y., & Yin, B. (2015, October). Big Data Analytics in MOOCs. In Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on (pp. 681-686). IEEE.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Autores que publicam nesta revista concordam com os seguintes termos:
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Attribution License que permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.