Effect of glycerol monolaurate nanocapsules on Streptococcus mutans biofilm in vitro
DOI:
https://doi.org/10.14393/BJ-v40n0a2024-72052Palavras-chave:
Biofilm, Dental Caries, Nanocapsule, Periodontal disease, Streptococcus mutans.Resumo
This study aimed to prepare and apply nanocapsules containing glycerol monolaurate for eradicating Streptococcus mutans biofilms. The interfacial deposition method of the preformed polymer synthesized the nanocapsules characterized for mean diameter, polydispersity index, zeta potential, pH, and morphology by transmission electron microscopy. The microdilution method investigated antimicrobial activity. Crystal violet staining determined biomass quantification and the ability to inhibit biofilm formation. The study also measured exopolysaccharide production and the number of viable colonies. The characterization outcomes indicated acceptable values for the mean diameter 198.1 ± 2, a polydispersity index of 0.087 ± 0.018, a zeta potential of -21.30 ± 2.00 mV, a pH of 6.19 ± 0.12, and typical nanostructure morphology. The evaluations of minimum inhibitory and bactericidal concentrations of glycerol monolaurate (free and nanoencapsulated) revealed their ineffectiveness in inhibiting microorganisms. Only free glycerol monolaurate inhibits S. mutans growth with 125 µg/mL. Biomass, exopolysaccharide content, and viable colonies in the biofilm were analyzed to assess the compounds' ability to inhibit biofilm formation. The tested compounds did not significantly reduce the formed biofilm. Despite unfavorable outcomes of the formulated preparation, further experimentation with a new formulation is encouraged to explore alternative strategies and potential improvements.
Downloads
Referências
BAKER, J. L., et al. The oral microbiome: diversity, biogeography and human health. Nature Reviews Microbiology, 2024, 22, 89–104. https://doi.org/10.1038/s41579-023-00963-6
BEDOYA-CORREA, C. M., RINCÓN-RODRÍGUEZ, R. J., & PARADA-SANCHEZ, M. T. Acidogenic and aciduric properties of Streptococcus mutans serotype c according to its genomic variability. European Journal of Oral Sciences, 2021, 129(6), e12824. https://doi.org/10.1111/eos.12824
BEYTH, N., HOURI-HADDAD, Y., DOMB, A., KHAN, W., & HAZAN, R. Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015, 2015, 246012. https://doi.org/10.1155/2015/246012
BOWEN, W. H., & KOO, H. Biology of Streptococcus mutans-derived glucosyltransferases: Role in extracellular matrix assembly and biofilm formation. Caries Research, 2018, 52(5), 291-307. https://doi.org/10.1159/000324598
CHOPRA, H., et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules (Basel, Switzerland), 2021, 26(16), 4998. https://doi.org/10.3390/molecules26164998
CLSI, Clinical Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard — Ninth Edition. CLSI document M07-A9, 2015, 32(2).
COSTERTON, J. W., STEWART, P. S., & GREENBERG, E. P. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284(5418), 1318-1322. https://doi.org/10.1126/science.284.5418.1318
DALL, L., & HERNDON, B. Quantitative assay of glycocalyx produced by viridans group streptococci that cause endocarditis. Journal of clinical microbiology,1989, 27(9), 2039–2041. https://doi.org/10.1128/jcm.27.9.2039-2041.1989
DUTTA, B., LAHIRI, D., NAG, M., MUKHERJEE, D., & RAY, R. R. Introduction to bacterial biofilm and acute infections. In: RAY, R. R., NAG, M., & LAHIRI, D. (eds) Biofilm-Mediated Diseases: Causes and Controls. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-0745-5_1
FEJERSKOV, O., et al. Dental caries: The disease and its clinical management. 3rd Edition. Wiley-Blackwell, 2015.
FESSI, H., et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics, 1989, 55(1), R1–R4. http://doi.org/10.1016/0378-5173(89)90281-0
GHANY, S. S. H. A. E., IBRAHEM, R. A., EL-GENDY, A. O., et al. Novel synergistic interactions between monolaurin, a mono-acyl glycerol, and β-lactam antibiotics against Staphylococcus aureus: an in vitro study. BMC Infectious Diseases, 2024, 24, 379. https://doi.org/10.1186/s12879-024-09261-9
HAM, Y., & KIM, T. J. Inhibitory activity of monoacylglycerols on biofilm formation in Aeromonas hydrophila, Streptococcus mutans, Xanthomonas oryzae, and Yersinia enterocolitica. SpringerPlus, 2016, 5, 1526. https://doi.org/10.1186/s40064-016-3182-5
KHALIL, N. M., et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids and Surfaces B: Biointerfaces, 2013, 101, 353-360. https://doi.org/10.1016/j.colsurfb.2012.06.024
KOO, H., FALSETTA, M. L., & KLEIN, M. I. The exopolysaccharide matrix: A virulence determinant of cariogenic biofilm. Journal of Dental Research, 2013, 92(12), 1065-1073. https://doi.org/10.1177/0022034513504218
KOUIDHI, B., ZMANTAR, T., & BAKHROUF, A. Anti-cariogenic and anti-biofilms activity of Tunisian propolis extract and its potential protective effect against cancer cells proliferation. Anaerobe, 2010, 16, 566–571. http://doi.org/10.1016/j.anaerobe.2010.09.005
KUANG, X., CHEN, V., & XU, X. Novel approaches to the control of oral microbial biofilms. BioMed Research International, 2018, 6498932. https://doi.org/10.1155/2018/6498932
KUBONIWA, M., & LAMONT, R. J. Subgingival biofilm formation. Periodontology 2000, 2010, 52(1), 38-52. https://doi.org/10.1111/j.1600-0757.2009.00311.x
LAMONT, R. J., KOO, H., & HAJISHENGALLIS, G. The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology, 2018, 16(12), 745-759. https://doi.org/10.1038/s41579-018-0089-x
LOPES, L. Q. S., et al. Characterisation and anti-biofilm activity of glycerol monolaurate nanocapsules against Pseudomonas aeruginosa. Microbial Pathogenesis, 2019, 130, 178–185. http://doi.org/10.1016/j.micpath.2019.03.007
LOPES, L. Q. S., et al. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees. Microbial Pathogenesis, 2016, 97, 183–188. http://doi.org/10.1016/j.micpath.2016.05.014
LOPES, L. Q. S., et al. Nanocapsules with glycerol monolaurate: Effects on Candida albicans biofilms. Microbial Pathogenesis, 2016, 97, 119–124. http://doi.org/10.1016/j.micpath.2016.05.016
MARZUOLI, I., et al.. Nanocapsule designs for antimicrobial resistance. Nanoscale, 2021, 13(23), 10342–10355. https://doi.org/10.1039/d0nr08146a
MERRITT, J. H., KADOURI, D. E., & O’TOOLE, G. A. Growing and analyzing static biofilms. Current Protocols in Microbiology, 2011, No. SUPPL. 22. http://doi.org/10.1002/9780471729259.mc01b01s22
O’TOOLE, G. A., et al. Genetic approaches to study of biofilms. Methods in Enzymology, 1999, 310, 91–109. http://doi.org/10.1016/S0076-6879(99)10008-9
PITTS, N. B., et al. Dental caries. Nature Reviews Disease Primers, 2017, 3, 17030. https://doi.org/10.1038/nrdp.2017.30
RUSSEL, A. D., & FURR, J. R. The antibacterial activity of a new chloroxylenol preparation containing ethylenediamine tetraacetic acid. Journal of Applied Bacteriology, 1977, 43(2), 253–260. http://doi.org/10.1111/j.1365-2672.1977.tb00749.x
SCHLIEVERT, P. M., & PETERSON, M. L. Glycerol monolaurate antibacterial activity in broth and biofilm cultures. PLoS One, 2012, 7(7), e40350. https://doi.org/10.1371/journal.pone.0040350
SCHLIEVERT, P. M., KILGORE, S. H., SEO, K. S., et al. Glycerol monolaurate contributes to the antimicrobial and anti-inflammatory activity of human milk. Scientific Reports, 2019, 9, 14550. https://doi.org/10.1038/s41598-019-51130-y
SEREMETA, K. P., CHIAPPETTA, D. A., & SOSNIK, A. Poly(ɛ-caprolactone), Eudragit® RS 100 and poly(ɛ-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids and Surfaces B: Biointerfaces, 2013, 102, 441-449. https://doi.org/10.1016/j.colsurfb.2012.06.038
SHETLAR, M. R., FOSTER, J. V., & EVERETT, M. R. Determination of serum polysaccharides by the tryptophane reaction. Proceedings of the Society for Experimental Biology and Medicine, 1948, 67(2), 125–130. http://doi.org/10.3181/00379727-67-16223
WU, S., et al. Biofilm-Sensitive Photodynamic Nanoparticles for Enhanced Penetration and Antibacterial Efficiency. Advanced Functional Materials, 2021, 31, 2103591. https://doi.org/10.1002/adfm.202103591
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Leonardo Quintana Soares Lopes, Rodrigo de Almeida Vaucher, Janice Luehring Giongo, Patrícia Kolling Marquezan, Roberto Christ Vianna Santos
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.