Antibacterial activity of Mangifera indica seed extracts combined with common antibiotics against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii isolates
DOI:
https://doi.org/10.14393/BJ-v39n0a2023-66760Palavras-chave:
Acinetobacter baumannii, Antimicrobial activity, Mangifera indica, Multidrug resistance, Pseudomonas aeruginosa.Resumo
In this project, we employed ethanolic (EMI) and aqueous (AMI) extracts of mango (Mangifera indica L., Anacardiaceae) fruit seeds as a modulator of antibiotic resistance against multidrug-resistant (MDR) Pseudomonas aeruginosa and Acinetobacter baumannii to evaluate natural compounds isolated from by-products or waste of edible plants. We also investigated the effect of these extracts alone and in combination with standard classes of antibiotics in the desired strains. M. indica seeds were processed and exploited using ethanol and water. The minimum inhibitory concentrations (MICs) of clinical isolates were examined against EMI and AMI extracts, followed by seven antibiotics of ceftazidime, ciprofloxacin, penicillin, amikacin, meropenem, ampicillin, and colistin. The checkerboard method evaluated the synergistic action between mango kernel extract (EMI) and seven antibiotics. EMI extract significantly revealed antimicrobial properties against MDR A. baumannii and P. aeruginosa with synergistic effects with the applied antibiotics. The considerable antibacterial efficacy of ethanolic extract of M. indica seeds can have great curative value as antibacterial drugs against infections caused by MDR P.aeruginosa and A. baumannii.
Downloads
Referências
ABD EL-BAKY, R.M., et al. Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. Infection and drug resistance. 2020, 13, 323. https://doi.org/10.2147%2FIDR.S238811
ADIKWU, M., JACKSON, C. and ESIMONE, C. Evaluation of in vitro antimicrobial effect of combinations of erythromycin and Euphorbia hirta leaf extract against Staphylococcus aureus. Research in Pharmaceutical Biotechnology. 2010, 2, 22-24. https://doi.org/10.5897/RPB.9000013
ADWAN, G., ABU-SHANAB, B. and ADWAN, K. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug–resistant Pseudomonas aeruginosa strains. Asian Pacific journal of tropical medicine. 2010, 3, 266-269. https://doi.org/10.1016/S1995-7645(10)60064-8
AHMAD, T.A., et al. Development of immunization trials against Acinetobacter baumannii. Trials in Vaccinology. 2016, 5, 53-60. http://dx.doi.org/10.1016/j.trivac.2016.03.001
AKBARI, R, et al. Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of acinetobacter baumannii and pseudomonas aeruginosa. Microbial Drug Resistance. 2019, 25, 193-202. https://doi.org/10.1089/mdr.2018.0016
ARROYO, L.A., et al. In vitro activities of tigecycline, minocycline, and colistin-tigecycline combination against multi-and pandrug-resistant clinical isolates of Acinetobacter baumannii group. Antimicrobial agents and chemotherapy. 2009, 53, 1295-1296. https://doi:10.1128/AAC.01097-08
ARULSELVI, K, et al. Preliminary Phytochemical screening and antimicrobial studies of aqueous and alcoholic extracts of Mangifera indica (Anacardiaceae) stem bark. International journal of pharmagenesis. 2010, 1, 217-220.
BARRASA-VILLAR, J.I., et al. Impact on morbidity, mortality, and length of stay of hospital-acquired infections by resistant microorganisms. Clinical infectious diseases. 2017. https://doi:10.1093/cid/cix411
BERGEN, P.J., et al. Synergistic killing of multidrug-resistant Pseudomonas aeruginosa at multiple inocula by colistin combined with doripenem in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrobial agents and chemotherapy. 2011, 55, 5685-5695. https://doi:10.1128/AAC.05298-11
BHAUMIK, S, et al. Microbiological profile and antibiotic susceptibility pattern of gram-negative isolates from tracheal secretions in a tertiary care setup. Medical Journal of Dr. DY Patil Vidyapeeth. 2022, 15, 440. https://doi:10.4103/mjdrdypu.mjdrdypu_679_20
BONOMO, R.A., SZABO, D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clinical infectious diseases. 2006, 43, S49-S56. https://doi.org/10.1086/504477
BOUCHER, H.W., et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical infectious diseases. 2009, 48, 1-12. https://doi:10.1086/595011
CHATTERJEE, M, et al. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. International Journal of Medical Microbiology. 2016, 306, 48-58. https://doi.org/10.1016/j.ijmm.2015.11.004
DELGADO-VALVERDE, M, et al. Activity of cefiderocol against high-risk clones of multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy. 2020, 75, 1840-1849. https://doi.org/10.1093/jac/dkaa117
DIJKSHOORN, L, NEMEC, A, SEIFERT, H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature reviews microbiology. 2007, 5, 939-951. https://doi:10.1038/nrmicro1789
DONGA, S, BHADU, G.R., CHANDA, S. Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract. Artificial Cells, Nanomedicine, and Biotechnology. 2020, 48, 1315-1325. https://doi.org/10.1080/21691401.2020.1843470
DONGA, S, CHANDA, S. Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system). Artificial Cells, Nanomedicine, and Biotechnology. 2021, 49, 292-302. https://doi.org/10.1080/21691401.2021.1899193
EL-GIED, A.A.A., et al. Antimicrobial activities of seed extracts of mango (Mangifera indica L.). Advances in Microbiology. 2012, 2, 4. https://doi:10.4236/aim.2012.24074
EL-MOKHTAR, M.A., HETTA, H.F. Ambulance vehicles as a source of multidrug-resistant infections: a multicenter study in Assiut City, Egypt. Infection and drug resistance. 2018, 11, 587. https://doi.org/10.2147%2FIDR.S151783
EXNER, M, et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS hygiene and infection control. 2017, 12. https://doi.org/10.3205%2Fdgkh000290
FALAGAS, M.E., KOLETSI, P.K., BLIZIOTIS, I.A. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. Journal of medical microbiology. 2006, 55, 1619-1629. https://doi:10.1099/jmm.0.46747-0
FALAGAS, M.E., KARAGEORGOPOULOS, D.E. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clinical infectious diseases. 2008, 46, 1121-1122. https://doi:10.1086/528867
FARHAN, S.M., et al. Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infection and drug resistance. 2019, 12, 2125. https://doi.org/10.2147%2FIDR.S198373
GAD, G.F., et al. Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. Journal of Antimicrobial Chemotherapy. 2007, 60, 1010-1017. https://doi.org/10.1093/jac/dkm348
GALES, A, et al. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997–1999. Clinical infectious diseases. 2001, 32, S146-S155. https://doi:10.1086/329186
GOLI, H.R., et al. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran. Iranian journal of microbiology. 2016, 8, 62. https://pubmed.ncbi.nlm.nih.gov/27092226/
GROSSI, P, GASPERINA, D.D. Treatment of Pseudomonas aeruginosa infection in critically ill patients. Expert review of anti-infective therapy. 2006, 4, 639-662. https://doi.org/10.1586/14787210.4.4.639
HIRSCH, E.B., TAM, V.H. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert review of pharmacoeconomics & outcomes research. 2010, 10, 441-451. https://doi.org/10.1586%2Ferp.10.49
HOWARD, A, et al. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence. 2012, 3, 243-250. https://doi.org/10.4161/viru.19700
JAHANGIRI, A, et al. Synergistic effect of two antimicrobial peptides, Nisin and P10 with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microbial Pathogenesis. 2021, 150, 104700. https://doi.org/10.1016/j.micpath.2020.104700
JAHURUL, M, et al. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food chemistry. 2015, 183, 173-180. https://doi.org/10.1016/j.foodchem.2015.03.046
KABUKI, T, et al. Characterization of novel antimicrobial compounds from mango (Mangifera indica L.) kernel seeds. Food chemistry. 2000, 71, 61-66. https://doi.org/10.1016/S0308-8146(00)00126-6
KARA, E.M., YILMAZ, M, ÇELIK, B.Ö. In vitro activities of ceftazidime/avibactam alone or in combination with antibiotics against multidrug-resistant Acinetobacter baumannii isolates. Journal of global antimicrobial resistance. . 2019, 17, 137-141. https://doi.org/10.1016/j.jgar.2018.12.004
KODORI, M, et al. The impact of primer sets on detection of the gene encoding biofilm‐associated protein (Bap) in Acinetobacter baumannii: in silico and in vitro analysis. Letters in Applied Microbiology. 2017, 64, 304-308. https://doi:10.1111/lam.12717
LEE, C-R, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in cellular and infection microbiology. 2017, 7, 55. https://doi.org/10.3389/fcimb.2017.00055
LI, J, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2006, 50, 2946-2950. https://doi.org/10.1128%2FAAC.00103-06
LIVERMORE, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clinical infectious diseases. 2002, 34, 634-640. https://doi.org/10.1086/338782
LONGO, F, VUOTTO, C, DONELLI, G. Biofilm formation in Acinetobacter baumannii. The new microbiologica. 2014, 37, 119-127.
LS, M-P, WEINSTEIN, R. Acinetobacter infection. The New England journal of medicine. 2008, 358, 1271-1281. http://doi:10.1056/NEJMra070741
LY, NS, et al. Colistin and doripenem combinations against Pseudomonas aeruginosa: profiling the time course of synergistic killing and prevention of resistance. Journal of Antimicrobial Chemotherapy. 2015, 70, 1434-1442. https://doi.org/10.1093/jac/dku567
MERAKOU, C, SCHAEFERS, M.M., PRIEBE, G.P. Progress toward the elusive Pseudomonas aeruginosa vaccine. Surgical infections. 2018, 19, 757-768. https://doi.org/10.1089/sur.2018.233
MONTEFOUR, K, et al. Acinetobacter baumannii: an emerging multidrug-resistant pathogen in critical care. Critical care nurse. 2008, 28, 15-25. https://doi.org/10.4037/ccn2008.28.1.15
MUSTAPHA, M.M., et al. Phylogenomics of colistin-susceptible and resistant XDR Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy. 2018, 73, 2952-2959. https://doi.org/10.1093/jac/dky290
OLIVEIRA, S.M.S.D., et al. Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica L., Anacardiaceae) peel. Revista Brasileira de Farmacognosia. 2011, 21, 190-193. http://doi:10.1590/S0102-695X2011005000014
PARK, Y.K., et al. Independent emergence of colistin-resistant Acinetobacter spp. isolates from Korea. Diagnostic microbiology and infectious disease. 2009, 64, 43-51. https://doi.org/10.1016/j.diagmicrobio.2009.01.012
PATERSON, D.L., DOI, Y. Editorial commentary: a step closer to extreme drug resistance (XDR) in gram-negative bacilli. Clinical infectious diseases. 2007, 45, 1179-1181. https://doi:10.2307/4485662
PECK, K.R., et al. In vitro time-kill studies of antimicrobial agents against blood isolates of imipenem-resistant Acinetobacter baumannii, including colistin-or tigecycline-resistant isolates. Journal of medical microbiology. 2012, 61, 353-360. https://doi:10.1099/jmm.0.036939-0
PELEG, A.Y., SEIFERT, H, PATERSON, D.L. Acinetobacter baumannii: emergence of a successful pathogen. Clinical microbiology reviews. 2008, 21, 538-582. https://doi.org/10.1128%2FCMR.00058-07
PEREZ, F, et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2007, 51, 3471-3484. https://doi.org/10.1128%2FAAC.01464-06
RAJAN, S, et al. Antidiarrhoeal efficacy of Mangifera indica seed kernel on Swiss albino mice. Asian Pacific Journal of Tropical Medicine. 2012, 5. https://doi:10.1016/s1995-7645
SAFAEI, H.G., et al. Distribution of the strains of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa isolates from burn patients. Advanced biomedical research. 2017, 6, 74. https://doi.org/10.4103%2Fabr.abr_239_16
SAIRAM, K, et al. Evaluation of anti-diarrhoeal activity in seed extracts of Mangifera indica. Journal of ethnopharmacology. 2003, 84, 11-15. https://doi.org/10.1016/S0378-8741(02)00250-7
SHABANI, Z, SAYADI, A. The antimicrobial in vitro effects of different concentrations of some plant extracts including tamarisk, march, acetone and mango kernel. Journal of Applied Pharmaceutical Science. 2014, 4, 75. https://doi:10.7324/JAPS.2014.40514
SHAH, K, et al. Mangifera indica (mango). Pharmacognosy reviews. 2010, 4, 42. https://doi.org/10.4103%2F0973-7847.65325
SHEIKH, A.F., et al. Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iranian journal of basic medical sciences. 2019, 22, 38. https://doi.org/10.22038%2Fijbms.2018.29264.7096
SHIN, B, PARK, W. Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. Journal of Microbiology. 2017, 55, 837-849. http://doi:10.1007/s12275-017-7288-4
TACCONELLI, E, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases. 2018, 18, 318-327. https://doi.org/10.1016/S1473-3099(17)30753-3
WEINSTEIN, R.A., et al. Overview of nosocomial infections caused by gram-negative bacilli. Clinical infectious diseases. 2005, 41, 848-854. https://doi.org/10.1086/432803
WHO. World Health Organization. List of bacteria for which new antibiotics are urgently needed. 2017.
WIEGAND, I, HILPERT, K, HANCOCK, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols. 2008, 3, 163-175. http://doi:10.1038/nprot.2007.521
ZAVASCKI, A.P., et al. The influence of metallo-β-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. Journal of Antimicrobial Chemotherapy. 2006, 58, 387-392. https://doi.org/10.1093/jac/dkl239
ZAVASCKI, A.P., et al. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert review of anti-infective therapy. 2010, 8, 71-93. https://doi.org/10.1586/eri.09.108
ZUNIGA-MOYA, J.C., et al. Antimicrobial profile of Acinetobacter baumannii at a tertiary hospital in Honduras: a cross-sectional analysis. Revista Panamericana de Salud Pública. 2020, 44. https://doi.org/10.26633%2FRPSP.2020.46
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Shadi Zeraatkar, Maedeh Tahan, Omefarveh Rostami, Alireza Neshani, Hadi Farsiani, Arezou Shahsavari, Hadi Safdari, Mahdi Hosseini Bafghi
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.