Allelopathy of Ricinus communis and light spectrum variation decrease emergence and growth of Cyperus rotundus
DOI:
https://doi.org/10.14393/BJ-v39n0a2023-63062Palavras-chave:
Bioherbicide, Castor bean, Light quality, Sedge, Weed.Resumo
Weeds negatively influence agricultural production. However, those losses depend on weed specie, its time of emergence, and period of interference on agricultural crops. Synthetic herbicides are commonly used to control these plants species; however, they may cause damage to the environment, human beings and animals health, and this problem justify the need to develop alternative bioherbicides. To evaluate the allelopathic potential of Ricinus communis (Castor bean) and light spectrum variation on the emergence and growth of Cyperus rotundus L., a trial was carried out in a protected environment with 15% of brightness reduction at the Center for Agricultural and Environmental Sciences at the Paraíba State University. Four aqueous extract concentrations of R. communis leaves were tested (0, 5, 10, and 15%) and four light spectrums variations (white, purple, blue, and red lights). Variables such as emergence, length, dry matter accumulation and growth rates of shoots and root of C. rotundus seedlings were assessed. Data were analyzed by normality test, analysis of variance, polynomial regression, and averages test. Soot and root emergence, length, and dry matter accumulation of C. rotundus seedlings were reduced due to the allelopathy caused by R. communis aqueous extract leaves (15% concentration) and under purple or red light spectrum radiation.
Downloads
Referências
BARBOSA, J.C. and Maldonado Júnior, W. Experimentação Agronômica & AgroEstat - Sistema para Análises Estatísticas de Ensaios Agronômicos. São Paulo: Funep, 2015.
BORELLA, J. and PASTORINI, L.H. Influência alelopática de Phytolacca dioica L. na germinação e crescimento inicial de tomate e picão-preto. Revista Biotemas. 2009, 22(3), 67-75. https://doi.org/10.5007/2175-7925.2009v22n3p67
CARVALHO, M.S.S., et al. Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa. Scientia Horticulturae. 2019, 245(2), 90-98. https://doi.org/10.1016/j.scienta.2018.10.001
CAVALCANTE, J.A., et al. Extrato aquoso de bulbos de tiririca sobre a germinação e crescimento inicial de plântulas de rabanete. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2018, 13(1), 39-44. https://doi.org/10.18378/rvads.v13i1.5701
CORDELL, G.A. Fifty years of alkaloid biosynthesis in Phytochemistry. Phytochemistry. 2013, 91(7), 29-51. https://doi.org/10.1016/j.phytochem.2012.05.012
DAYAN, F.E., CANTRELL, C.L. and DUKE, S.O. Natural products in crop protection. Bioorganic & Medicinal Chemistry. 2009, 17(12), 4022-4034. https://doi.org/10.1016/j.bmc.2009.01.046
DEMOTES-MAINARD, S., et al. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany. 2016, 121(1), 4-21. https://doi.org/10.1016/j.envexpbot.2015.05.010
EDMOND, J.B. and DRAPALA, W.J. The effects of temperature, sand and soil, and acetone on germination of okra seeds. Proceedings of the American Society for Horticultural Science. 1958, 71(12), 428-434.
EPRINTSEV, A.T., et al. Regulation of expression of the mitochondrial and peroxisomal forms of citrate synthase in maize during germination and in response to light. Plant Science. 2018, 272(7), 157-163. https://doi.org/10.1016/j.plantsci.2018.04.017
FERRAZ, R.L.S., et al. Atributos qualitativos de sementes de algodoeiro hidrocondicionadas em soluções de silício. Científica. 2017, 45(1), 85-94. http://dx.doi.org/10.15361/1984-5529.2017v45n1p85-94
FERRAZ, R.L.S., et al. Estimation of productivity gain by irrigated and fertilized forage palm plants (Opuntia fícus indica (L.) Mill. and Nopalea cochenillifera (L.) Salm-Dyck): systematic review and meta-analysis. Australian Journal of Crop Science. 2019, 13(11), 1873-1882. https://doi.org/10.21475/ajcs.19.13.11.p2095
FUENTES-GANDARA, F., et al. Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques. Journal of Supercritical Fluids. 2019, 143(1), 32-41. https://doi.org/10.1016/J.SUPFLU.2018.08.004
FUKUDA, N. 2019. Plant growth and physiological responses to light conditions. In: M. Anpo, H. Fukuda and T. Wada, eds. Plant Factory Using Artificial Light: Adapting to Environmental Disruption and Clues to Agricultural Innovation. Amsterdam: Elsevier, pp. 71-77.
GUO, L., et al. Genomic Clues for Crop–Weed Interactions and Evolution. Trends in Plant Science. 2018, 23(12), 1102-1115. https://doi.org/10.1016/j.tplants.2018.09.009
HOFFMANN, C.E.F., et al. Atividade alelopática de Nerium oleander L. e Dieffenbachia picta Schott em sementes de Lactuca Sativa L. e Bidens pilosa L. Revista de Ciências Agroveterinárias. 2007, 6(1), 11-21.
HONG, N.H., et al. Screening for allelopathic potential of higher plants from Southeast Asia. Crop Protection. 2003, 22(6), 829-836. https://doi.org/10.1016/S0261-2194(03)00051-6
HUSSAIN, S., et al. Interference and economic threshold level of little seed canary grass in wheat under different sowing times. Environmental Science and Pollution Research. 2015, 22(8), 441-449. https://doi.org/10.1007/s11356-014-3304-y
IQBAL, J., et al. Herbicidal potential of dryland plants on growth and tuber sproutingin purple nutsedge (Cyperus rotundus). Planta Daninha. 2018, 36(12), 1-8. https://doi.org/10.1590/S0100-83582018360100001
ISLAM, A.K.M.M. and KATO-NOGUCHI, H. Allelopathic prospective of Ricinus communis and Jatropha curcas for bio-control of weeds. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 2013, 63(11), 731-739. https://doi.org/10.1080/09064710.2013.865073
KAPOOR, S., et al. Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. Journal of Photochemistry and Photobiology B: Biology. 2018, 183(6), 258-265. https://doi.org/10.1016/j.jphotobiol.2018.04.018
KONG, Y., et al. Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species. Environmental and Experimental Botany. 2018, 155(11), 345-359. https://doi.org/10.1016/j.envexpbot.2018.07.021
LABOURIAU, L.G. and VALADARES, M.B. On the germination of seeds of Calotropis procera (Ait.) Ait.f. Anais da Academia Brasileira de Ciências. 1976, 48, 174-186.
LONG, J., et al. Strongly enhanced luminescence of Sr4Al14O25:Mn4+ phosphor by co-doping B3+ and Na+ ions with red emission for plant growth LEDs. RSC Advances. 2018, 8(3), 1469-1476.
MOROTA, F.K., et al. Sistemas de manejo de plantas daninhas utilizando o novo herbicida pyroxasulfone visando ao controle químico de gramíneas em soja. Revista Brasileira de Herbicidas. 2018, 17(2), 1-10. https://doi.org/10.7824/rbh.v17i2.584
NAEEM, M., et al. Trianthema portulacastrum and cyperus rotundus interference in maize and application of allelopathic crop extracts for their effective management. Planta Daninha. 2016, 34(2), 209-218. https://doi.org/10.1590/S0100-83582016340200002
OKA, Y. and YAMAMOTO, K., 2019. Photoreceptor-Mediated Plant Development. In: M. Anpo, H. Fukuda and T. Wada, eds. Plant Factory Using Artificial Light: Adapting to Environmental Disruption and Clues to Agricultural Innovation, Amsterdam: Elsevier, pp. 111-117.
RICCI, M.S.F., et al. Produção da cenoura e efeito na fertilidade do solo e nutrição decorrente da solarização do solo para controle da tiririca. Bragantia. 2006, 65(4), 607-614. https://doi.org/10.1590/S0006-87052006000400011
RIGON, C.A.G., et al. Potencial alelopático de extratos foliares de mamona sobre a germinação e o desenvolvimento de picão-preto e soja. Revista Tecnologia & Ciência Agropecuária. 2014, 8(2), 33-39.
ROMDHANE, S., et al. Assessment of the ecotoxicological impact of natural and synthetic β triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Science of the Total Environment. 2019, 651(2) 241-249. https://doi.org/10.1016/j.scitotenv.2018.09.159
SAADAOUI, E., et al. Allelopathic effects of aqueous extracts of Ricinus communis L. on the germination of six cultivated species. International Journal of Plant & Soil Science. 2015, 7(4), 220-227. https://doi.org/10.9734/IJPSS/2015/16483
SANTANA, E.R., et al. Biological activity and photostability of biflorin micellar nanostructures. Molecules. 2015, 20(5), 8595-8604. https://doi.org/10.3390/molecules20058595
SILVA, E.S., et al. Cenário das pesquisas sobre alelopatia no Brasil e seu potencial como estratégia na diminuição da utilização de pesticidas que provocam poluição ambiental: uma revisão integrativa. Diversitas Journal. 2018, 3(2), 442-454. https://doi.org/10.17648/diversitas-journal-v3i2.648
SILVA, A.E., et al. Microclimate changes, photomorphogenesis, and water consumption by Moringa oleifera cuttings under light spectrum variations and exogenous phytohormones concentrations. Australian Journal of Crop Science. 2020, 14(5), 1-9. https://doi.org/10.21475/ajcs.20.14.05.p2096
SILVEIRA, H.R.O., et al. Alelopatia e homeopatia no manejo da tiririca (Cyperus rotundus). Planta Daninha. 2010, 28(3), 499-506. https://doi.org/10.1590/S0100-83582010000300006
SILVEIRA, P.F., MAIA, S.S.S. and COELHO, M.F.B. Potencial alelopático do extrato aquoso de folhas de Mimosa tenuiflora (Willd.) Poir. NA germinação de Lactuca sativa L. Bioscience Journal. 2012, 28(3), 472-477.
WANG, H., et al. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology. 2009, 96(1), 30-37. https://doi.org/10.1016/j.jphotobiol.2009.03.010
XIMENEZ, G.R., et al. Phytotoxic potential of the crude extract and leaf fractions of Machaerium hirtum on the initial growth of Euphorbia heterophylla and Ipomoea grandifolia. Planta Daninha. 2019, 37(7), e019180433. https://doi.org/10.1590/S0100-83582019370100015
YAMASHITA, O.M., GUIMARÃES, S.C. and CAVENAGHI, A.L. Germinação das sementes de Conyza canadensis e Conyza bonariensis em função da qualidade de luz. Planta Daninha. 2011, 29(4), 737-743. https://doi.org/10.1590/S0100-83582011000400003
ZIMDAHL, R.L. 2018. Herbicides and the Environment. In: R.L. Zimdahl, ed. Fundamentals of Weed Science. London: Academic Press, pp 557-590.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Rener Luciano de Souza Ferraz, Patrícia da Silva Costa, Guilherme Felix Dias, José Regis da Silva; Pedro Roberto Almeida Viégas; Aldair de Souza Medeiros, José Dantas Neto, Alberto Soares de Melo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.