Biometric assessment of early stem growth at a commercial stand of African mahogany (Khaya grandifoliola)
DOI:
https://doi.org/10.14393/BJ-v39n0a2023-62994Palavras-chave:
Forest Modeling, Hardwood, Production, Tree Crops, Validation Study.Resumo
African mahogany species (Khaya spp.) have proven to be promising in the Brazilian forestry scenario, replacing native mahogany owing to their medium-fast growth and relevant timber value. This study aimed to carry out forest inventory and assessments of a Khaya grandifoliola plantation in the first years after planting, test hypsometric models to describe tree growth, and identify the maximum commercial stem yield (i.e., greater than 6 m in height). The stand was located in the municipality of Piracanjuba (GO), where seedlings of seed origin were used. Twenty random plots with a 15 m radius were allocated, and the total height (HT), stem height (HS), diameter at breast height (DBH), crown area, and forest canopy were measured. Four hypsometric models were employed in this study. The best equation was selected based on determination coefficients and standard errors. Further, the models were cross-validated to evaluate predictability and bias. At four years of planting, the largest class of HS was found to range from 3.1 to 4.1 m, and most trees had a DBH ranging from 0.084 to 0.126 m. The percentage of trees with stems > 6 m was 8.35%. The linear model ensured more consistent results for estimating HT, while the quadratic and Weibull models led to more consistent results for HS. By using models, stem measurements can be measured based on DBH, ultimately aiding the selection of stem management strategies for the growth of forests with greater commercial value.
Downloads
Referências
ALVARES, C.A., et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. 2013, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507
ARAÚJO, D., et al. Variação genética para caracteres silviculturais em progênies de polinização aberta de Astronium graveolens Jacq. (Anacardiaceae). Cerne. 2014, 20(1), 61-68. https://doi.org/10.1590/S0104-77602014000100008
BOARETTO, M.A.C. and FORTI L.C. Perspectiva no controle de formigas cortadeiras. Serie Técnica IPEF Piracicaba. 1997, 11(30), 31-46. Available from: https://www.ipef.br/publicacoes/stecnica/nr30/cap3.pdf
BOLFE, E.L., SANO E.E. and CAMPOS, S.K. Dinâmica Agrícola no Cerrado: Análises e projeções. Brasília-DF: Embrapa Cerrados, 2020.
CAMERON, A.D. Importance of early selective thinning in the development of long-term stand stability and improved log quality: a review. Forestry. 2002, 75(1), 25-35. https://doi.org/10.1093/forestry/75.1.25
CAMPOE, O.C., et al. Stem production, light absorption and light use efficiency between dominant and non-dominant trees of Eucalyptus grandis across a productivity gradient in Brazil. Forest Ecology and Management. 2013, 288(15), 14-20. https://doi.org/10.1016/j.foreco.2012.07.035
CAMPOS, J.C.C. and LEITE, H.G. Mensuração Florestal: Perguntas e Respostas. 2 ed. Viçosa: UFV, 2006.
CARMONA, I.N., et al. Variáveis morfométricas de três espécies florestais em sistema agroflorestal. Revista Agroecossistemas. 2018, 10, 131. http://doi.org/10.18542/ragros.v10i1.5158
DA SILVA, M.G., et al. Indolbutyric Acid (IBA) in the African Mahogany (Khaya grandifoliola C. DC.) cuttings and mini-cuttings development. Advances in Forestry Science. 2020, 7(2), 1009-1016. https://doi.org/10.34062/afs.v7i2.9793
KLEIN, D.R., et al. General and silvicultura aspects of Cordia americana, Aspidosperma polyneuron, Toona ciliata e Khaya spp. Journal of Agroveterinary Sciences. 2016, 15, 155-164. https://doi.org/10.5965/223811711522016155
MARENCO, R.A., GONÇALVES, J.F.C. and VIEIRA, G. Leaf gas exchange and carbohydrates in tropical trees differing in successional status in two light environments in central Amazonia. Tree Physiology, Oxford. 2001, 21, 1311–1318. https://doi.org/10.1093/treephys/21.18.1311
NICOLETTI, M.F., et al. Relação hipsométrica para Pinus taeda L. em diferentes fases do ciclo de corte. Floresta e Ambiente. 2016, 23(1), 80-89. https://doi.org/10.1590/2179-8087.051513
OLIVEIRA, R.D.S. and FRANCA, T.M. Climate zoning for the cultivation of african mahogany species in Brazil. Cerne. 2020, 26, 369-380. https://doi.org/10.1590/01047760202026032748
PELLICO-NETTO, S. and BRENA, D.A. Inventário Florestal. Curitiba: Editorado pelos autores, 1997.
PENNINGTON, T.D. and CHEEK, M. Khaya grandifoliola C. DC. 2015. Available from: http://floradobrasil.jbrj.gov.br/reflora/herbarioVirtual/ConsultaPublicoHVUC/ConsultaPublicoHVUC.do?idTestemunho=4658185
REIS, C.A.F., DE OLIVEIRA, E.B. and SANTOS, A.M. Mogno Africado (Khaya spp.): atualidades e perspectivas do cultivo no Brasil. Brasília-DF: Embrapa,2019.
RESENDE, R.T., et al. Air-drying of eucalypts logs: genetic variations along time and stem profile. Industrial Crops and Products. 2018, 124, 316-324. https://doi.org/10.1016/j.indcrop.2018.08.002
RETSLAFF, F.A.Z., et al. Curvas de sítio e relações hipsométricas para Eucalyptus grandis na região dos Campos Gerais, Paraná. Cerne. 2015, 21(2), 219-225. https://doi.org/10.1590/01047760201521021349
RIBEIRO, A., FERRAZ FILHO, A.C. and SCOLFORO, J.R.S. O Cultivo do Mogno Africano (Khaya spp.) e o Crescimento da Atividade no Brasil. Floresta e Ambiente. 2017, 24, 1-11. https://doi.org/10.1590/2179-8087.076814
RIBEIRO, A., FERRAZ FILHO, A.C. and SCOLFORO, J.R.S. Tree height prediction in Brazilian Khaya ivorensis stands. Bosque. 2018, 39(1), 15-26. http://dx.doi.org/10.4067/S0717-92002018000100015
ROLIM, S.G. and PIOTTO, D. Silvicultura e Tecnologia de Espécies da Mata Atlântica. Belo Horizonte: Editora Rona, 2018.
SANQUETA, C.R., et al. Inventários florestais: planejamento e execução. 4.ed. Curitiba: Multi-Graphic, 2014.
SANQUETA, M.N.I., et al. Ajuste de equações hipsométricas para estimação de altura total de indivíduos jovens de teca. Científica. 2015, 43(4), 400-406. http://dx.doi.org/10.15361/1984-5529.2015v43n4p400-406
SCHIKOWSKI, A.B., et al. Ajustes de modelos hipsométricos para povoamento de Cryptomeria japonica (Thunb. Ex L. f). D. Don no Paraná. Enciclopédia Biosfera. 2014, 10(19), 70-77.
SEBBENN, A.M., et al. Variabilidade genética e interação genótipo x locais em jequitibá-rosa – Cariniana legalis (Mart.) O. Ktze. Revista do Instituto Florestal. 2000, 12(1), 13-23.
SEBBENN, A.M., et al. Comportamento da variação genética entre e dentro de procedimento e progênies de Gallesia integrifólia Vell. Moq. Para caracteres quantitativos. Revista do Instituto Florestal. 2009, 21(2), 151-163.
SILVA, L.F., et al. Equações hipsométricas, volumétricas e de crescimento para Khaya ivorensis plantada em Pirapora. Floresta e Ambiente. 2016, 23(3), 362-368. https://doi.org/10.1590/2179-8087.130715
SOARES, S.D., et al. Genetic diversity in populations of African mahogany (Khaya grandioliola C. DC.) introduced in Brazil. Genetics and Molecular Biology. 2020, 43, 19. https://doi.org/10.1590/1678-4685-GMB-2018-0162
SOUSA, G.T.O., et al. Relações hipsométricas para Eucalyptus urophylla conduzidos sob regime de alto fuste e talhadia no Sudoeste da Bahia. Scientia Plena. 2013, 9(4), 1-7.
SOUZA, K.R., et al. Danos em Khaya ivorensis provocado por Trigona spinipes na savana brasileira. Acta Brasiliensis. 2017, 1(1), 40–42. https://doi.org/10.22571/Actabra11201715
STOLLE, L., et al. Modelos hipsométricos para um povoamento jovem de Khaya ivorensis A. Chev. BIOFIX Scientific Journal. 2018, 2(2), 231–236. http://dx.doi.org/10.5380/biofix.v3i2.58799
WEBER, J.C., et al. Phenotypic selection of Calycophyllum spruceanum on farms in the Peruvian amazon: evaluating a low-intensity selection strategy. Silvae Genetica. 2009, 58(4), 172-179. https://doi.org/10.1515/sg-2009-0023
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Renan Krupok Matias, Camilla Nascimento Brito, Rafael Tassinari Resende, Jovan Martins Rios, Gabriel Mendes Santana, Guilherme Murilo de Oliveira, Fábio Venturoli
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.