Avaliação da idade pós-colheita e de métodos de superação de dormência sobre a germinação de Echinochloa crus-galli
DOI:
https://doi.org/10.14393/BJ-v40n0a2024-62804Palavras-chave:
Capim-arroz, Manejo integrado de plantas daninhas, Banco de sementes, Dormência de sementes, Plantas daninhasResumo
O capim-arroz (Echinochloa crus-galli) é uma das plantas daninhas mais problemáticas em arroz irrigado. Ela também tem sido importante em cultivos de sequeiro devido a ocorrência de populações resistentes a herbicidas. O entendimento da sua dinâmica de germinação é fundamental para que medidas adequadas de manejo sejam aplicadas. Além disso, uma vez que a realização de pesquisas com capim-arroz depende da obtenção de plantas a partir de sementes, suas características de dormência são de particular interesse. Objetivou-se com este estudo avaliar a influência da idade pós-colheita sobre a germinação de sementes de capim-arroz (Echinochloa crus-galli) e a eficiência de diferentes métodos de superação da dormência em populações suscetíveis e resistentes a herbicidas. Foram avaliados a porcentagem de germinação (G), o índice de velocidade de germinação (IVG) e a viabilidade das sementes pelo teste topográfico de tetrazolio em lotes de sementes com quatro diferentes idades pós-colheita (dois anos, um ano, dois meses e um dia pós-colheita) submetidas a 15 métodos de superação da dormência. Os métodos de superação de dormência incluíram a variação de temperatura e a utilização de soluções contendo H2SO4, KNO3 e ácido giberélico (GA3). Sementes de um ano e dois anos apresentam germinação superior a 90%, independente da utilização de algum método de superação de dormência. No entanto, as sementes com dois meses ou um dia de idade pós-colheita germinaram apenas quando submetidas a temperatura de 40 oC durante sete dias, com germinação de 25,2 e 5,9%, respectivamente. As populações de capim-arroz suscetíveis e resistentes a herbicidas apresentaram semelhantes dormência e resposta aos métodos de superação de dormência. Sementes recém colhidas apresentam altos níveis de dormência, sendo que métodos específicos são parcialmente eficazes na superação da dormência das sementes de capim-arroz.
Downloads
Referências
ABRANTES, F.L., MACHADO-NETO, N.B. and CUSTODIO, C.C. Seed moisture content can be used to accelerate dormancy release during after-ripening of Urochloa humidicola cv. Llanero spikelets. Ciência Rural. 2021, 51(1), e20200526. https://doi.org/10.1590/0103-8478cr20200526
AGOSTINETTO, D. et al. Period prior to interference of barnyardgrass is modified due to the spraying of cyhalofop-butyl alone or associated with penoxsulam in paddy rice crop. Advances in Weed Science. 2021, 39, e021225214. https://doi.org/10.51694/AdvWeedSci/2021;39:00001
ALBORESI, A. et al. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment. 2005, 28(4), 500-512. https://doi.org/10.1111/j.1365-3040.2005.01292.x
AZANIA, A.A.P.M. et al. Métodos de superação de dormência em sementes de Ipomoea e Merremia. Planta Daninha. 2003, 21(2), 203-209.
https://doi.org/10.1590/S0100-83582003000200005
BAJWA, A.A. et al. Eco-biology and management of Echinochloa crus-galli. Crop Protection. 2015, 75(1), 151-162. https://doi.org/10.1016/j.cropro.2015.06.001
BASKIN, C.C. and BASKIN, J.M. Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles. Seed Science Research. 2000, 10(4), 409-413. https://doi.org/10.1017/S0960258500000453
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: MAPA/ ACS, 2009. 395 p.
BURNSIDE, O.C. et al. Seed longevity of 41 weed species buried 17 years in Eastern and Western of Nebraska. Weed Science. 1996, 44(1), 74-86. https://doi.org/10.1017/S0043174500093589
CLAY, S.A. et al. Growth and fecundity of several weed species in corn and soybean. Agronomy Journal. 2005, 97(1), 294-302. https://doi.org/10.2134/agronj2005.0294a
DALAZEN, G. et al. Degradation enhancement as the mechanism of resistance to imazethapyr in barnyardgrass. Planta Daninha. 2018, 36, e018179504. https://doi.org/10.1590/S0100-83582018360100119
DALAZEN, G. et al. Climate change scenarios increase the growth and resistance of barnyardgrass to imazethapyr. International Journal of Agriculture & Biology. 2020, 24(6), 1469-1478. https://doi.org/10.17957/IJAB/15.1584
DELATORRE, C. Dormência em sementes de arroz vermelho. Ciência Rural. 1999. 29(3), 565-571. https://doi.org/10.1590/S0103-84781999000300032
DI NOLA, L. and TAYLORSON, R.B. Brief high temperature exposure to release dormancy affects soluble and membrane-bound protein composition in Echinochloa crus-galli (L.) Beauv. seeds. Journal of Plant Physiology, 1989. 135(1), 117–121. https://doi.org/10.1016/s0176-1617(89)80235-4
ELMORE, C.D. and PAUL, R.N. Composite list of C₄ weeds. Weed Science, 1983. 31(5), 686-692. https://doi.org/10.1017/S0043174500070193
FOGLIATTO, S.; FERRERO, A. and VIDOTTO, F. How can weedy rice stand against abiotic stresses? a review. Agronomy, 2020. 10(9), 1284. https://doi.org/10.3390/agronomy10091284
FOGLIATTO, S.; VIDOTTO, F. and FERRERO, A. Morphological characterization of Italian weedy rice (Oryza sativa) populations. Weed Research, 2012. 52(1), 60-69. https://doi.org/10.1111/j.1365-3180.2011.00890.x
GIBSON, K.D. et al. Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Research, 2002. 42(5), 351-358. https://doi.org/10.1046/j.1365-3180.2002.00295.x
GUBLER, F. et al. Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiology, 2008. 147(2), 886–896. https://doi.org/10.1104/pp.107.115469
GUILLEMIN, J.P. et al. Assessing potential germination period of weeds with base temperatures and base water potentials. Weed Research, 2013. 53(1), 76-87. https://doi.org/10.1111/wre.12000
HEAP, I. The International Herbicide-Resistant Weed Database. Online. Friday, March 21, 2024. Available from: www.weedscience.org
IZYDORCZYK, C. et al. Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signaling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). Plant, Cell and Environment, 2017. 41(5), 1022–1037. https://doi.org/10.1111/pce.12949
KOVACH, D.A., WIDRLECHNER, M.P. and BRENNER, D.M. Variation in seed dormancy in Echinochloa and the development of a standard protocol for germination testing. Seed Science and Technology, 2010. 38(13), 559-571. https://doi.org/10.15258/sst.2010.38.3.04
LIU, K. et al. Effect of diurnal fluctuating versus constant temperatures on germination of 445 species from the Eastern Tibet Plateau. PLoS ONE, 2013. 8(7), e69364. https://doi.org/10.1371/journal.pone.0069364
LONGO, C. et al. From the outside to the inside: new insights on the main factors that guide seed dormancy and germination. Genes, 2021. 12(1), 52. https://doi.org/10.3390/genes12010052
MAGUIRE, J.D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 1962. 2(1), 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
MARCHESI, C. and SALDAIN, N.E. First report of herbicide-resistant Echinochloa crus-galli in uruguayan rice fields. Agronomy, 2019. 9(12), 790. https://doi.org/10.3390/agronomy9120790
MARTINKOVA, Z., HONEK, A., and LUKAS, J. Seed age and storage conditions influence germination of barnyardgrass (Echinochloa crus-galli). Weed Science, 2006. 54(02), 298–304. https://doi.org/10.1614/WS-05-005R.1
MATZENBACHER, F.O. et al. Distribution and analysis of the mechanisms of resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone and quinclorac herbicides. Journal of Agricultural Science, 2015. 153(6), 1044-1058. https://doi.org/10.1017/S0021859614000768
MATZENBACHER, F.O. et al. Rapid diagnosis of resistance to imidazolinone herbicides in barnyardgrass (Echinochloa crus-galli) and control of resistant biotypes with alternative herbicides. Planta Daninha, 2013. 31(3), 645-656. https://doi.org/10.1590/S0100-83582013000300016
MCINTYRE, G.I. The role of nitrate in the osmotic and nutritional control of plant development. Australian Journal of Plant Physiology, 1997. 24(2), 103–118. https://doi.org/10.1071/PP96064
MIYAHARA, M. On dormancy of the seeds of Echinochloa crus-galli Beauv. var. oryzicola OHWI, a paddy field weed. Japan Agricultural Research Quarterly, 1974. 8(4), 194-198.
MOLLARD, F.P.O. and INSAUSTI, P. Breaking Setaria parviflora seed dormancy by nitrates and light is part of a mechanism that detects a drawdown period after flooding. Aquatic Botany, 2009. 91(1), 57-60. https://doi.org/10.1016/j.aquabot.2009.01.002
NAWROT-CHORABIK, K. et al. Stratification, scarification and application of phytohormones promote dormancy breaking and germination of pelleted scots pine (Pinus sylvestris L.) seeds. Forests, 2021. 12(5), 621. https://doi.org/10.3390/f12050621
OLATOYE, S.T. and HALL, M.A., 1973. Interaction of ethylene and light on dormant weed seeds. In: HEYDECKER, W., ed. Seed ecology, University Park: Pennsylvania State University, pp. 233-249.
PERALTA OGOREK, L., STRIKER, G.G., and MOLLARD, F.P.O. Echinochloa crus-galli seed physiological dormancy and germination responses to hypoxic floodwaters. Plant Biology, 2019. 21(6):1159-1166. https://doi.org/10.1111/plb.13029
PINTO, J.J.O. et al. Controle de capim-arroz (Echinochloa spp.) em função de métodos de manejo na cultura do arroz irrigado. Planta Daninha, 2008. 26(4), 767-777. https://doi.org/10.1590/S0100-83582008000400008
SILVEIRA, F.A.O. et al. Effect of seed storage on germination, seedling growth and survival of Mimosa foliolosa (Fabaceae): implications for seed banks and restoration ecology. Tropical Ecology, 2014. 55 (3), 385-392.
SADEGHLOO, A., ASGHARI, J., and GHADERI-FAR, F. Seed germination and seedling emergence of velvetleaf (Abutilon theophrasti) and barnyardgrass (Echinochloa crus-galli). Planta Daninha, 2013. 31(2), 259-266. https://doi.org/10.1590/S0100-83582013000200003
SUNG, S.S., LEATHER, G.R., and HALE, M.G. Development and germination of barnyardgrass (Echinochloa crus-galli) seeds. Weed Science, 1987. 35(2), 211-215. https://doi.org/10.1017/S0043174500079078
TAYLORSON, R.B. and DI NOLA, L. Increased phytochrome responsiveness and a high-temperature transition in barnyardgrass (Echinochloa crus-galli) seed dormancy. Weed Science, 1989. 37(3), 335-338. https://doi.org/10.1017/S0043174500072015
TIAN, Z. et al. Effects of Echinochloa crus-galli and Cyperus difformis on yield and eco-economic thresholds of rice. Journal of Cleaner Production, 2020. 259, 120807. https://doi.org/10.1016/j.jclepro.2020.120807
TUAN, P.A. et al. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Frontiers in Plant Science, 2018. 9, 668. https://doi.org/10.3389/fpls.2018.00668
ULGUIM, A.R. et al. Status of weed control in imidazolinone-herbicide resistant rice in Rio Grande do Sul. Advances in Weed Science, 2021. 39, e237355, https://doi.org/10.51694/AdvWeedSci/2021;39:00007
VAN ACKER, R.C. Weed biology serves practical weed management. Weed Research, 2009. 49(1), 1-5.
https://doi.org/10.1111/j.1365-3180.2008.00656.x
YANG, X. et al. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.). J. Proteome, 2017. 150(1), 160-169. https://doi.org/10.1016/j.jprot.2016.09.009
YE, N. et al. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany, 2012. 63(5), 1809-1822. https://dx.doi.org/10.1093%2Fjxb%2Ferr336
ZHANG, C. et al. Genetic dissection of seed dormancy in rice (Oryza sativa L.) by using two mapping populations derived from common parents. Rice, 2020. 13, 52. https://doi.org/10.1186/s12284-020-00413-4
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Alexandre Pisoni, Giliardi Dalazen, Mateus Gallon, Catarine Markus, Aldo Merotto Jr
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.